Image scanning microscopy with quantum and classical correlations

Ron Tenne

Weizmann Institute of Science, Rehovot, Israel

Weizmann, Rehovot, Israel

ISSW 2020

Weizmann Institute

Dan Oron

Yaron Silberberg

Bat-el Raphael

Uri Rossman

Yonatan Israel

Gur Lubin

EPFL, AQUA lab

Edoardo Charbon

Claudio Bruschini

Michel Antolovic

Samuel Burri

University of Warsaw

Weizmann Institute

Dan Oron

Yaron Silberberg

Bat-el Raphael

Uri Rossman

Yonatan Israel

Gur Lubin

University of Warsaw

EPFL, AQUA lab

Edoardo Charbon

Claudio Bruschini

Michel Antolovic

Samuel Burri

Yaron Silberberg 1951-2019

The resolution problem

Super-resolution "flow chart"

Super-resolution "flow chart"

Super-resolution in a confocal microscope?

Image Scanning Microscopy \ Airy scan

- Exchange pinhole with a detector array
- Scan sample
- Shift images and sum

Sheppard, C. J. R. Optik (Stuttg). 80, 53–54 (1988)

Muller and Enderline, PRL, 2010

Image Scanning Microscopy \ Airy scan

- Exchange pinhole with a detector array
- Scan sample
- Shift images and sum

Sheppard, C. J. R. Optik (Stuttg). 80, 53–54 (1988)

Muller and Enderline, PRL, 2010

Super-resolution "flow chart"

Temporal correlation: bunching and antibunching

Super-resolution "flow chart"

Assumptions:

٠

•

•

٠

•

Breaking the limit – Super-resolution at a glance

sumptions:	STORM frames STORM image	Excitation Beam "On" "On" + Depletion Beam "Off" Effective PSF 10-70nm = • •	Resolution Enhancement by Structured Illumination Microscopy $(1) \qquad \qquad$
	PALM\STORM	STED	SIM\ISM
Linear response	\bigotimes	\bigotimes	\odot
Uniform illumination	\bigcirc	\bigotimes	\bigotimes
Far-field detection	\bigcirc	$\overline{\bigcirc}$	$\overline{\bigcirc}$
Time independent image	\bigotimes	\odot	\odot
Classical light	\bigcirc	$\overline{\bigcirc}$	\bigcirc

Can quantum optics contribute?

The promise of quantum optics for microscopy

- Phase sensitivity
- Absorption sensitivity
- Quantum lithography

Boto,...,Dowling, *PRL* **85** (2000) Brida,..., Berchera, *Nat. Photonics*, **4** (2010) Ono,...,Takeuchi, *Nat. Comm.* **4** (2013) Israel,...,Silberberg, *PRL* **112** (2014) Toninelli,...,Padgett, *Optica* **6** (2019)

A ubiquitous quantum state of light

Antibunching

Quantum correlations measured with a camera

O. Schwartz, J. M. Levitt, RT, S. Itzhakov, Z. Deutsch, and D. Oron, Nano Lett., 13 (2013),

Q-ISM: 4 times resolution enhancement

Each emitter is a source of 'missing' photon pairs

TCSPC SPAD

14 single detectors

Q-ISM: 4 times resolution enhancement

Each emitter is a source of 'missing' photon pairs 3000 ᡔᠣᠣᠣᠣᠣ $g^{(2)}(0) = 0.95$ 2500 2000 pairs Photon 1200 $a^{(2)}(0) = 0.90$ 1000 500 -500 0 500 τ (ns)

Q-ISM: Transverse (xy) resolution demonstration

Q-ISM: Axial (z) resolution demonstration

Widefield

In focus and out of focus planes contribute equally

Confocal

$$P_{signal} = P_{excitation} \cdot P_{detection} \propto \frac{1}{z^2}$$

A quantum effect in a biological sample

3T3 cells. Micro-tubules labeled with quantum dots

Widefield fluorescence imaging

Samples courtesy of Prof. Yuval Ebenstein, TAU

From expensive and cumbersome to SPAD arrays

Israel, RT et al., Nat. Comm., 8, (2017)

Bruschini *et al., Light: Science & Applications* **8**, 87 (2019) Antolovic *et al., Opt. Exp.,* **26**, 17 (2018)

HBT with an on-chip SPAD array

Q-ISM with a SPAD array

Lubin*, RT*, Antolovic* et al., Opt. Express 27.23 (2019)

Can we join forces? Sparsity reconstruction

Rossman, RT et al, Optica 6 (2019)

In collaboration with Yonina Elder, Weizmann

Reconstruction of a cell sample

b Q-ISM ISM а 20 60 100 140 0 100 200 imes10³

100 ms exposure

10 ms exposure

 $imes 10^3$

JSR

Rossman, RT et al, Optica 6 (2019)

Super-resolution "flow chart"

SOFI: Using emitter fluctuations

Detringer, ..., Weiss, Enderlein, PNAS, 106, 52 (2009)

PL image

SOFI image

Not only with quantum dots

• Dyes

(Dertinger et al, Ang. Chem., 49 (2010))

• Fluorescent proteins (Dedecker *et al*, PNAS, 109, (2012))

SOFI + ISM = SOFISM

$$C^{(2)}(x) = \langle F_a(x,t) \cdot F_a(x,t) \rangle - \langle F_a(x,t) \rangle \langle F_b(x,t) \rangle$$

Sroda*, Makowski*, RT*,...,Lapkiewicz, arXiv, 2002.00182 (2020)

Same resolution shorter acquisition

Sroda*, Makowski*, RT*,...,Lapkiewicz, arXiv, 2002.00182 (2020)

Multiple detectors, multiple sampling periods

- Same scene observed by multiple detectors at different times
- Better sampling of $C^{(2)}(\tau)$
- ISM is critical for SOFI SNR

Sroda*, Makowski*, RT*,...,Lapkiewicz, arXiv, 2002.00182 (2020)

Summary

Photon correlation contrast in an image scanning microscopy scheme

Measure photon correlation with a CMOS SPAD array

Algorithmic reconstruction from millisecond exposure, quantum and classical data

Using classical fluctuations as the contrast of image scanning microscopy

Fourier re-weighting (deconvolution)

The point spread function (PSF) of ISM

Real space

$$h_{ISM}(x) = P_{excitation} \cdot P_{detection} = h_{in}(x) \cdot h_{in}(x) = h_{in}^2(x)$$

Momentum space

$$\tilde{h}_{ISM}(k) = h_{in}(k) * h_{in}(k)$$

1D PSF in momentum space

Counting the missing photon pairs

G2ISM

$$G_{AB}^{(2)}(x) = G_{\infty}^{(2)}(x) - G_{0}^{(2)}(x) =$$

$$= \sum_{i=1}^{n} [h_e(x_i - x_s)]^2 \cdot [h_{im}(x_i - x_s)]^2$$

Simulated

66 QDs. 25nm, 250msec steps. Including dark current and Poissonian noise

200 400 600 800 1000 1200

0.25 um

ISM

G2ISM

0

HBT with an on-chip SPAD array

Main challenge: Optical cross-talk

False positive zero delay pair

Hesong Xu et al. Procedia Engineering 87 (2014)

Higher order HBT with one port

