Combining linear and SPAD-mode diode operation in-pixel for wide dynamic range CMOS optical sensing

Matthew Johnston

Assistant Professor School of Electrical Engineering & Computer Science Collaborative Robotics and Intelligent Systems (CoRIS) Institute Oregon State University, Corvallis, OR

June 8, 2020

Outline

□ Motivation & Background

□ In-Pixel Wide Dynamic Range Optical Sensor Array

On-Chip High-Voltage and Low-Voltage Bias Generation

Wide-Dynamic-Range Imaging

HDR image

Biomedical Sensing

2020 Oregon State Sensors and Integrated Microelectronics Lab

University

CMOS Photodiode Operational Modes

CMOS Photodiode Operational Modes

CMOS Photodiode Operational Modes

SPAD Readout Challenges (1)

□ Dark count rate (DCR)

- Thermally excited, trapped carriers and tunneling
- Increases power consumption and decreases sensitivity
- Structure and process dependent

SPAD Readout Challenges (2)

Limited dynamic range

- Pulse rate is easily saturated at high-illumination
- Time resolution needs to be significantly high \rightarrow active circuits burning more power

PD Readout Challenges

□ Limited sensitivity

- Limited quantum efficiency (no avalanche multiplication)
- Read noise (circuit noise) limits lowest detectable signal
- Long integration time

Dual-Mode: Dynamic Range Extension

Outline

Hyunkyu Ouh Ph.D. 2019 *(Now at Apple)*

□ In-Pixel Wide Dynamic Range Optical Sensor Array

On-Chip High-Voltage and Low-Voltage Bias Generation

In-Pixel Readout Architecture

SPAD-mode: Mixed Quench-and-Reset Circuit

- Mixed quench and active reset; final output is a CMOS digital pulse train
- Hold-off time can be controlled for after-pulse reduction

PD-mode Readout: I-to-F Conversion

Iph=Imin

Inverter-based I-to-F Converter

()

()

 \odot

High-level Array Architecture

Fully parallel readout with in-pixel dual-mode detectors

Alternate Dual-Frame Operation

Dual-Mode Geiger/Linear Pixel

Chip Summary

H. Ouh, B. Shen, and M.L. Johnston, "Combined in-pixel linear and single-photon avalanche diode operation with integrated biasing for wide-dynamic-range optical sensing," IEEE Journal of Solid-State Circuits, vol. 55, no. 2, pp. 392-403, 2020.

2020 Oregon State Sensors and Integrated Microelectronics Lab

Measurement Setup

Preliminary Measurements

2020 Oregon State Sensors and Integrated Microelectronics Lab

Optical Sensitivity

Output pulse rate at each mode for varying light intensity

	Sensitivity		
SPAD-mode @ 100Hz	37 kHz/uW/cm ²		
PD-mode @ 30Hz	7 Hz/uW/cm ²		
Gain Ratio	5,400		

2020 **Oregon State Sensors and Integrated Microelectronics Lab** M.L. Johnston

Dual-Mode Optical Dynamic Range

Combined final output (PD-mode gain adjusted)

2020 Oregon State Sensors and Integrated Microelectronics Lab M.L. Johnston

Dual-Mode Signal-to-Noise Ratio

Performance Comparison

D . f					
Keterence	Wang et al., <i>TED</i> , 2006	Manickam et al., JSSC 2017	Dutton et al., Sensors 2018	Mori et al., ISSCC 2016	I his work
Process	180 nm CMOS	130 nm	40 nm FSI	110 m BSI	180 nm CMOS
Array Size	28 x 28	32 x 32	96 x 40	1280 x 720	8 x 8
Pixel Size	$23\mu\mathrm{m}$	$100\mu{ m m}$	$8.25\mu m^a$	$3.8\mu\mathrm{m}$	$80\mu{ m m}$
Fill-factor	25 %	25 %	66 % / 26 %ª	-	0.8 %
Diode Operation	PD	PD	SPAD	APD/PD	SPAD/PD
Readout Architecture	In-pixel	In-pixel	In-pixel	APS column readout	In-pixel
Frame Rate (FPS)	30	1	240^{b}	30 (APD) 30 (PD)	100 (SPAD) 30 (PD)
Optical Dynamic Range (dB)	110	116	99.6 ^b @OSR=256	1 photon (APD) 60 (PD)	129
Photons Detection Range (photons/cm ² ·s) ^c	$10^{13} - 10^{17}$	10^{10} - 10^{15}	-	$10^8 - 10^{13}$	10^{11} - 10^{18}
Dark Signal	-	20 fA	150 cps	0.1 cps	135 kcps
Max. SNR (dB)	$< 60^{d}$	<80 ^e	52	-	75
Power Consumption per pixel ^f	$0.25\mu\mathrm{W}$	115 µW	-	-	36 μW (SPAD) 40 μW (PD)
Interface Data Rate per pixel	-	100 kbps	46 kbps		5.6 kbps (SPAD) 560 bps (PD)
Integrated HV-LV Bias	_	_	Ν	Ν	Y

^a Readout circuits are separate, and the fill-factor was calculated as the ratio of imaging array area to whole chip area.

^b Estimated from summary table for a 1M-pixel HDR QIS reported in the reference.

^c Converted from reported lux or intensity (W/cm²·s) to photon flux, or estimated from values in the reference if optical sensing range is not explicitly provided.

^d Estimated from ADC resolution; ^e estimated from a measured SNR plot; ^f total power including core and I/O power normalized to number of channels.

H. Ouh, B. Shen, and M.L. Johnston, "Combined in-pixel linear and single-photon avalanche diode operation with integrated biasing for wide-dynamic-range optical sensing," IEEE Journal of Solid-State Circuits, vol. 55, no. 2, pp. 392-403, 2020.

Outline

Motivation & Background

Boyu Shen Ph.D. Candidate

□ In-Pixel Wide Dynamic Range Optical Sensor Array

□ On-Chip High-Voltage and Low-Voltage Bias Generation

HV Biasing Considerations for SPAD Arrays

Addressing low breakdown voltage of MOS

- Triple well NMOS switches
- Increasing V_{BODY} in later charge pump stages
- Thick oxide NMOS for higher V_{DS} across switches

Challenges

- Low breakdown voltage of MOS (<5V)
- Large area due to low density MIM caps
- Closed-loop regulation with high output voltage

HV Biasing Considerations for SPAD Arrays

Dual-mode HV-LV Charge Pump

- Single voltage source for efficient, dual-mode high (>10V) and low(<5V) voltage generation.
- A high voltage triple-well diode structure is proposed to reconfigure the high voltage and low voltage output.
- Frequency and feedback ratio tuning to improve efficient operation in both HV and LV modes.

B. Shen, S. Bose, and M.L. Johnston, "A 1.2V-20V closed-loop charge pump for high dynamic range photodetector array biasing," *IEEE Transactions on Circuits and Systems II: Express Briefs*, 2018, vol. 66, no. 3, pp. 327-331, 2019.

Dual-mode HV-LV Charge Pump

B. Shen, S. Bose, and M.L. Johnston, "A 1.2V-20V closed-loop charge pump for high dynamic range photodetector array biasing," *IEEE Transactions on Circuits and Systems II: Express Briefs*, 2018, vol. 66, no. 3, pp. 327-331, 2019.

2020 Oregon State Sensors and Integrated Microelectronics Lab

M.L. Johnston

Oregon State University

HV Biasing Considerations for SPAD Arrays

HV Charge Pump with Active Charge/Discharge

- □ Geiger-mode and linear-mode photodiode operation combined inpixel for >129dB optical dynamic range
- □ On-chip high-voltage and low-voltage biasing in low-voltage CMOS
- □ Fully standalone pixel architecture with small-area integrated biasing promising for optical detection in bio/chemical applications

Related Publications

- 1. H. Ouh, B. Shen, and M.L. Johnston, "Combined in-pixel linear and single-photon avalanche diode operation with integrated biasing for wide-dynamic-range optical sensing," *IEEE Journal of Solid-State Circuits*, vol. 55, no. 2, pp. 392-403, 2020.
- 2. B. Shen, S. Bose, and M.L. Johnston, "A 1.2V-20V closed-loop charge pump for high dynamic range photodetector array biasing," *IEEE Transactions on Circuits and Systems II: Express Briefs*, 2018, vol. 66, no. 3, pp. 327-331, 2019.
- 3. B. Shen, S. Bose, and M.L. Johnston, "Fully-integrated charge pump design optimization for above-breakdown biasing of single-photon avalanche diodes in 0.13 μm CMOS," *IEEE Transactions on Circuits and Systems I: Regular Papers*, vol. 66, no. 3, pp. 1258-1269, 2019.
- 4. S. Bose, H. Ouh, S. Sengupta, and M.L. Johnston, "Parametric study of p-n junctions and structures for CMOSintegrated single-photon avalanche diodes," *IEEE Sensors Journal*, vol. 18, no. 13, pp. 5291-5299, 2018.
- 5. H. Ouh and M.L. Johnston, "Dual-mode, in-pixel linear and single-photon avalanche diode readout for low-light dynamic range extension in photodetector arrays," *IEEE Custom Integrated Circuits Conference (CICC),* San Diego, CA, pp. 1-4, Apr. 2018.
- 6. H. Ouh, S. Sengupta, S. Bose, and M.L. Johnston, "Dual-mode, enhanced dynamic range CMOS optical sensor for biomedical applications," *IEEE Biomedical Circuits and Systems Conference (BioCAS),* Turin, Italy, pp. 1-4, Oct. 2017.
- 7. B. Shen, S. Bose, and M.L. Johnston, "On-chip high-voltage SPAD bias generation using a dual-mode, closed-loop charge pump," *IEEE International Symposium on Circuits and Systems (ISCAS),* Baltimore, MD, pp. 1-4, May 2017.

Acknowledgements

This work was supported in part by the Center for Design of Analog-Digital Integrated Circuits (CDADIC), the National Institutes of Health (NIH), and the National Science Foundation (NSF).

We are grateful for the support!

Combining linear and SPAD-mode diode operation in-pixel for wide dynamic range CMOS optical sensing

Matthew Johnston

Assistant Professor School of Electrical Engineering & Computer Science Collaborative Robotics and Intelligent Systems (CoRIS) Institute Oregon State University, Corvallis, OR, USA

June 8, 2020

Thanks!

