

Imaging oxygenation by near-infrared optical tomography based on SPAD image sensors

Prof. Dr. Martin Wolf

Dr. Alexander Kalyanov, Jingjing Jiang, Aldo di Costanzo Mata, Dr. Scott Lindner, Dr. Tanja Karen, Dr. Chao Zhang, EPFL

Prof. Dr. Edoardo Charbon, EPFL

Brain lesions in preterm infants Bleeding due to Cysts due to hypoxia hypoxia/ischemia Healthy

Brain lesions in preterm infants Bleeding due to Healthy hypoxia

Cysts due to hypoxia/ischemia

Brain lesions in preterm infants Bleeding due to Healthy hypoxia

Cysts due to hypoxia/ischemia

Brain lesions are irreversible and lead to long-term disabilities

hypoxia invisible

cysts due to hypoxia at ≤72h

- Brain damage occurs during first 72h of life due to hypoxia/ischemia
- Hypoxia cannot be measured \rightarrow not treated
- White matter injury visible only once tissue decays (day 21) \rightarrow too late
- Irreversible brain damage \rightarrow life-long disability
- If hypoxia was detected, \rightarrow prevention possible

High clinical need to prevent brain lesions

- 900 preterm infants / year in CH (23 - 32 weeks gestation)
- 15 millions worldwide
- 80% survivors
- 50% significant cognitive delay
- 40% behavioural problems
- 25% cerebral palsy

Lifelong and severe socio-economical burden

How to prevent life-long disability: PiOneer

- Needed:
 - Quantitative oxygenation imaging
 - At bedside

Modality	Oxygenation	Quantitative	Non-	Bed-	Continuous	
			ionizing	side		
СТ	No	-	No	No	No	
PET	No	-	No	No	No	_ risky
MRI	No	-	Yes	No	No	
EEG	No	-	Yes	Yes	Yes	routine
Ultrasound	No	-	Yes	Yes	(Yes)	techniques
Optoacoustic	Yes	No	Yes	Yes	(Yes)	_ research
NIROT	Yes	Yes	Yes	Yes	Yes	} choice

How to prevent life-long disability: PiOneer

- Needed:
 - Quantitative oxygenation imaging
 - At bedside

Modality	Oxygenation	Quantitative	Non-	Bed-	Continuous	
			ionizing	side		
СТ	No	-	No	No	No	
PET	No	-	No	No	No	_ risky
MRI	No	-	Yes	No	No	
EEG	No	-	Yes	Yes	Yes	routine
Ultrasound	No	-	Yes	Yes	(Yes)	techniques
Optoacoustic	Yes	No	Yes	Yes	(Yes)	- research
NIROT	Yes	Yes	Yes	Yes	Yes	- choice

NIRS and NIROT

Transillumination of whole head Contrast: Oxy-, deoxyhemoglobin Oxygenation $StO_2 = O_2Hb / (O_2Hb + HHb)$ Quantitative, non-invasive, harmless, frequently repeatable

Blood volume BV in [ml/100g] or total hemoglobin concentration [tHb µmol/l] Blood flow BF in ml/100g/min or hemoglobin flow HbF [µmol/(I*min)] Arterial, venous or tissue oxygen saturation SaO₂, SvO₂, StO₂ [%] O₂ delivery DO₂ [µmol/(I*min)] DO₂ = HbF * SaO₂ O₂ consumption VO₂ [µmol/(I*min)] VO₂ = HbF * (SaO₂ - SvO₂) **Tissue oxygen saturation StO₂ [%]= 0.25 * SaO₂ + 0.75 * SvO₂ ~ SvO₂**

StO₂ = SaO₂ – 0.75 * VO₂ / HbF tHb = a * HbF^β where 0.28< β <0.38

State of the art in NIROT

USZ Universitäts Spital Zürich Cooper RJ 2014 RSI 85, 053105

State of the art in NIROT

- Spatial resolution ~1cm
- ≤32 PMT detectors
- Bulky systems
- NOT UPSCALABLE

Cooper RJ 2014 RSI 85, 053105

State of the art in NIROT

- Spatial resolution ~1cm
- ≤32 PMT detectors
- Bulky systems
- NOT UPSCALABLE

Cooper RJ 2014 RSI 85, 053105

Our approach: NIROT Pioneer

- Single-photon SPAD time-resolved picosecond camera
- ~1000 x more detectors than state of art

Ocelot and Piccolo

	Ocelot	Piccolo
Array size	144 X 252	32 X 32
DCR Hz	60	141
Fill-factor %	28	28
Peak PDP (500nm) %	40	40
PDP NIR (800nm) %	12	12
Microlenses CF	2.97	2.97
PDE (800nm) %	10	10
Max. excess bias V	5.5	5.5
No. of TDCs	1728	128
TDC LSB ps	48.9 or 65.1	48.9
FWHM timing response (ps)	116	116
1/0 bandwidth Gbps	11.5 Gbps	5.12
Max. throughput Gphotons/s	6 Gphoton/s (includes compression)	0.224
Die area mm ²	10.3 mm x 21.6 mm	2.0 mm x 5.0mm

Y-fiber splitter with power meter 98/2 splitting ratio

• 25mm FoV

- Depth reachable and clinical usefulness
 - 6cm for gated SPAD, ~zero distance

6 cm

- Depth reachable and clinical usefulness
 - 6cm for gated SPAD, ~zero distance

Tosi A et al. Opt Exp 2011;19:10735-46

PiOneer

- Depth reachable and clinical usefulness
 - 6cm for gated SPAD, ~zero distance

- Depth reachable and clinical usefulness
 - 6cm for gated SPAD, ~zero distance

6 cm

PiOneer

PiOneer

- Depth reachable and clinical usefulness
 - 6cm for gated SPAD, ~zero distance

Tosi A et al. Opt Exp 2011;19:10735-46

6 cm

Simulation results

FEM Mesh

Simulation results

Lesions of 1.8mm diameter detectable

Simulation results

Number of detectors increases the resolution

Experiment vs. simulation results

Experiment and simulations agree

PiOneer

Phantom results

USZ Universitäts Spital Zürich

HR-NIROT prototype & results

50 mm

90 mm

Phantom validation: Speed

Case 1: resolution Two spheres $\emptyset = 5 \text{ mm}$ lateral distance = 5 mm depth = 15 mm

Tracking objects 0.2 second acquisition / source

When it comes to clinics ...

- Moles and hair are difficult to model
- Instrumental response function is non-trivial to decouple

Fig.1 Three rays A, B and C are projected from the object to the SPAD array.

• Methods needed to tackle noise: Calibration methods

J. Jiang, M. Wolf, and S. Sanchez Majos, "Fast reconstruction of optical properties for complex segmentations in near infrared imaging," J. Mod. Opt. 64, 732–742 (2017).

Phantom experiment

Table 1. Optical properties of the silicone phantom

optical properties	$\mu_a \ [mm^{-1}]$		$\mu_s' \ [mm^{-1}]$		
wavelengths	689 nm	725 nm	689 nm	725 nm	
bulk	0.0053	0.0055	0.9	0.86	
sphere 1	0.031	0.025	1.06	1.01	
sphere 2	0.031	0.025	1.06	1.01	

Results image reconstruction (1)

689 nm

PiOneer

Results image reconstruction (2)

725 nm

Motor activation in adult subject

- Stimulus: Fingertapping exercise
- 3D tomographic images
- Activation visible in 2cm depth
- Demonstrates brain imaging.

PiOneer

Conclusions NIROT

Technological

- A new NIROT concept
- First test successful

Societal/Clinical

- ✓ 10% preterm birth rate
- Prevention & efficient therapy
- Reduced mortality & life-long disability

Outlook

- First in vivo studies
- ✓ Ocelot image sensor

Thank you!

