

International SPAD Sensor Workshop Virtual Edinburgh, 8-10 June 2020

Scalable, Multi-functional CMOS SPAD arrays for Scientific Imaging

Leonardo Gasparini, Manuel Moreno Garcia, Majid Zarghami, Matteo Perenzoni Fondazione Bruno Kessler

> in collaboration with **Prof. André Stefanov University of Bern**

iris.fbk.eu gasparini@fbk.eu

Scalable, Multi-functional CMOS SPAD arrays for Scientific Imaging Outline

- Applications and requirements
- Technologies for Scientific Imaging
- CMOS SPAD imagers with fully parallel timestamping capabilities
- A 224×271 multi-functional CMOS SPAD imager

Scientific imaging Applications

Scientific imaging Applications

Scientific imaging What a Physicist asks

- 1. 100% sensitivity
- 2. No noise (device noise, electronic noise)
- 3. Millions of channels in zero area
 - Fully parallel / Imaging
 - No correlated noise (crosstalk, afterpulsing)
- 4. 100% duty cycle / No dead times
- 5. Special features
 - Room temperature operation
 - Fast turn-on (electrical device gating)

EU H2020 FET-OPEN Project SUPERTWIN

All Solid-State Super-Twinning Photon Microscope

Goal: to develop the **solid-sate technology** foundation for the next generation of **super-resolution microscopes** based on **entangled photons**

International SPAD Sensor Workshop 2020

10/06/2020

Detecting entangled photons

Measuring spatio-temporal correlations

1. Detect single photons

(High sensitivity)^N

2. Identify coincidences in time (e.g. using timestamps)

High-resolution/precision fully-parallel timestamping

International SPAD Sensor Workshop 2020

3. Extract their spatial correlations

Many pixels (→ small pixels)

>)20 page 6

Single-photon technologies

That you can buy

Λ

New and future options: Intensifier+TimePix3							
	РМТ	SNSPD	SiPM	EM-CCD	I-CCD	sCMOS	CMOS SPAD
Solid-state	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Imaging	×	×	×	\checkmark	\checkmark	\checkmark	\checkmark
High-res. imaging	×	×	×	✓	\checkmark	$\checkmark\checkmark$	×
High frame rate	-	-	-	×	×	\checkmark	\checkmark
Time-gating	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	×	\checkmark	\checkmark	$\checkmark\checkmark$
Photon timestamping	\checkmark	$\checkmark\checkmark$	\checkmark	×	×	×	\checkmark
Room temperature operation	\checkmark	**	\checkmark	×	×	✓	\checkmark
High PDE	\checkmark	$\checkmark\checkmark$	\checkmark	$\checkmark\checkmark$	√(√)	√(√)	×
Low noise	\checkmark	$\checkmark\checkmark$	\checkmark	$\checkmark\checkmark$	\checkmark	\checkmark	×

Single-photon technologies

That you can buy

New and future options: Intensifier+TimePix3 QIS							
	РМТ	SNSPD	SiPM	EM-CCD	I-CCD	sCMOS	CMOS SPAD
Solid-state	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Imaging	×	×	×	\checkmark	\checkmark	\checkmark	\checkmark
High-res. imaging	×	×	×	\checkmark	\checkmark	 ✓ ✓ 	→ ×
High frame rate	-	-		•	••	1	√
Time-gating	$\checkmark\checkmark$	$\checkmark\checkmark$	Те	chnolog	y develop	oment	$\checkmark\checkmark$
Photon timestamping	\checkmark	$\checkmark\checkmark$	\checkmark	×	×	×	\checkmark
Room temperature operation	\checkmark	××	\checkmark	×	×	\checkmark	\checkmark
High PDE	\checkmark	$\checkmark\checkmark$	\checkmark	$\checkmark\checkmark$	√(√)	√(√)	×
Low noise	\checkmark	$\checkmark \checkmark$	\checkmark	$\checkmark\checkmark$	\checkmark	\checkmark	×

International SPAD Sensor Workshop 2020

Single-photon technologies SPAD imagers (fully parallel operation) in Research

Time-to-Digital Converter

[Richardson, CICC 09] [Veerappan, ISSCC 11] [Villa, JSTQE 14] [Field, JSSC 14] [Vornicu, TCAS I 17]

Time-to-Analog Converter

[Stoppa, ESSCIRC 09] [Parmesan, IISW 15]

Time-gated Digital Counter

[Burri, OpEx 14] [Al Abbas, IEDM 16] [Ulku, JSTQE 19] [Morimoto, Optica 20]

Time-gated Analog Counter

[Pancheri, TED 13] [Perenzoni, ISSCC 15]

SPAD imagers (fully parallel operation) in Research State-of-the-Art

1st SUPERTWIN SPAD array: SuperEllen 32×32 SPAD/TDCs in 150nm CMOS

44.64 μm

Pixel block diagram

[Gasparini, ISSCC 18]

[Zarghami, JSSC accepted]

After metal 1

Pixel area partitioning

	Pixel
Pixel pitch	
SPAD size	

SPAD size	19.8 µm
Pixel fill factor	19.48 %
Sharing of SPAD well (MTF distortion)	No
SPAD excess bias voltage	3.0 V
SPAD DCR, median	600 Hz
Crosstalk	0.1%

TDC

TDC area	402.7 μm²
Time resolution	204.5±2.7 ps
Depth / Range	8 bit / 52 ns
DNL	-149+157 ps
INL	-190+254 ps
Precision	240 ps (raw) 205 ps (calibrated)

Chip Array size 32×32 pixels 1.69×1.88 mm² Chip size 80 kfps (full readout) Frame rate 450 kfps (row skipping) 1 MHz (frame skipping) Obs. rate Duty cycle 5% 11.1 mW (row skipping) Power 7.8 mW (frame skipping) page

International SPAD Sensor Workshop 2020

10/06/202

SuperEllen's Frame skip High duty cycle (> 5× wrt SotA)

10/06/202

page

[Unternährer, Optica 18]

Demonstration of space-momentum entanglement of an SPDC source

Near field correlations

- Correlated in time

 ~at the same time
- Correlated in space
 - \circ ~in the same place

[Unternährer, Optica 18]

Demonstration of space-momentum entanglement of an SPDC source

Near field correlations

- Correlated in time

 ~at the same time
- Correlated in space
 - \circ ~in the same place

[Unternährer, Optica 18]

Demonstration of space-momentum entanglement of an SPDC source

Near field correlations

- Correlated in time

 ~at the same time
- Correlated in space
 - \circ ~in the same place

[Unternährer, Optica 18]

Demonstration of space-momentum entanglement of an SPDC source

Near field correlations

- Correlated in time

 ~at the same time
- Correlated in space
 - \circ ~in the same place

Far field correlations

- •Correlated in time
 - $_{\odot}$ ~at the same time
- •Anti-correlated in momentum o in opposite direction

page

[Unternährer, Optica 18]

Demonstration of space-momentum entanglement of an SPDC source

Near field correlations

- Correlated in time

 ~at the same time
- Correlated in space
 - \circ ~in the same place

Far field correlations

- •Correlated in time
 - \circ ~at the same time
- •Anti-correlated in momentum
 - \circ in opposite direction

bade

[Unternährer, Optica 18]

Demonstration of space-momentum entanglement of an SPDC source

Super-resolution quantum imaging at the Heisenberg limit

International SPAD Sensor Workshop 2020

Side effects from working with quantum optics Crosstalk characterization from 2nd order correlations

Distance ρ_{-}

 $G^{(2)}(\rho_{-})$

 $P_{xtalk}(\Delta x, \Delta y)$

International SPAD Sensor Workshop 2020

10/06/2020

2nd SUPERTWIN SPAD array: SuperAlice

From requirements to architecture

Pixel: SuperEllen vs SuperAlice

Chip: SuperEllen vs SuperAlice

224×272 Multi-functional pixel array Working with a 1P4M 110 nm technology

Dead area

SPAD

12.9%

45.9%

Electronics area 41.2%

Constraints: limited silicon area (370 μ m², \approx 14 flip-flops), routing (4 metals)

 \rightarrow New TDC architecture: new Gated Ring Osc (GRO)

register behaves as a counter/shift register

Reference	GRO type	#MOS/ GRO	# bits	Tech. [nm]	Area [μm²]	Proj. @ 110 nm [μm²]
[Henderson, JSSC 19]	Differential, 3-bit	n.a.	12	40	85	639
[Manuzzato, ESSCIRC 19]	Differential, 3-bit	108	10	150	1200	645
<i>SuperEllen</i> [Gasparini, ISSCC 18]	Single-end., sin interp. 3-bit	24	8	150	402	216
SuperAlice	Single-end., 1-bit	11	8	110	340	
Compact, low power, 1-bit GRO	RESET	S ⁻				P

Multi-functional pixel

Main components

- SPAD + quench + gated FE+ 1b SRAM
- Digital stuff: 4 functionalities + readout \circ GRO
 - $_{\odot}$ Gated external clock
 - \circ 7-bit register: ripple counter / shift register
 - Routable inputs
 - Low area available → get rid of RST

Multi-functional pixel

Fine timestamping mode

- SPAD enables the GRO
- GRO oscillates until a STOP is received (not shown)
- The timestamp has 8 bits • The LSB is fed into the register during readout

Multi-functional pixel

Coarse timestamping mode

- FPGA generates a low frequency clock
- SPAD triggers
 → clock unmasked

Multi-functional pixel Photon counting mode

- Ext CK tied at VDD
- SPAD triggers \rightarrow +1
- N observation windows are opened
 T_{Obs} ≥ 10 ns

page

Multi-functional pixel Binary imaging mode

- The SPAD may see a photon
- Ext CK pulsed at the end of the win
 → The SPAD state is shifted in the reg
- 7 observation windows are opened
 - $\circ T_{Obs} \ge 10 \text{ ns}$
 - T_{Obs} can change (e.g. 0.01/0.1/1/10 μs)

Multi-functional pixel Readout

- Limited space for routing
 → serial readout
- HF CK provided as D input

 8th bit of the fine timestamp
 Or 0 (when GRO under reset)

2nd SUPERTWIN SPAD array: SuperAlice

224×272 Multi-functional pixels in 110 nm CIS

Pixel layout

After metal 1

Pixel	
Pixel pitch	30.0 μm
SPAD size	11.0 µm
Pixel fill factor	12.9 %
Sharing of SPAD well (MTF distortion)	No
SPAD DCR, median, @ 3V	150 Hz
Crosstalk	0.03%

	IDC
TDC area w/ reconf. FF	340 μm²
Time resolution	>180 ps
Depth / Range	8 bit / 46 ns
DNL (p-p)	0.3 LSB
INL (p-p)	1.0 :SB
Precision	360 ps (raw)

TDC

	Chip
Array size	224×272 pixels
Chip size	7.5×9.1 mm ²
Frame rate	2.5 kfps (row skipping)
Power	50.0 mW

International SPAD Sensor Workshop 2020

2nd SUPERTWIN SPAD array: SuperAlice Sample images

Photon counting 1k 1.27-µs-long observations

Image obtained from accumulated photon counts

Coarse timestamping

1k 635-ns-long observations

Image obtained from average photon arrival time

Fine timestamping 10k 45-ns-long observations

Image obtained from average photon arrival time

Binary imaging 256 combined observations

Image obtained from weighted combination of accumulated binary images

International SPAD Sensor Workshop 2020

10/06/2020

2nd SUPERTWIN SPAD array: *SuperAlice* Sample images (Matlab's Jet colormap)

Photon counting 1k 1.27-µs-long observations

Image obtained from accumulated photon counts

Coarse timestamping 1k 635-ns-long observations

Image obtained from average photon arrival time

Fine timestamping 10k 45-ns-long observations

Image obtained from average photon arrival time

Binary imaging 256 combined observations

Image obtained from weighted combination of accumulated binary images

International SPAD Sensor Workshop 2020

10/06/2020

SPAD imagers (fully parallel operation) in Research SuperEllen and SuperAlice vs State-of-the-Art

[Henderso	n, JSSC 19]	[Hutchings	, JSSC 19]
 40 nm 192×128 pixels 18.4×9.2 µm², 13% FF Well sharing, ~oval SPAD 	 Photon timestamping TDC: 33-120 ps, 12 bit 18.6 kfps → 0.9% duty cycle 	 3D stacked 90/40 nm 256×256 SPADs / 64×64 processing units 9.18 µm, 51% FF / 36.72 µm 	 Photon timestamping, photon counting TDC: 38-560 ps, 14 bit 760 fps → 0.7% duty cycle
SuperEllen [Zargha	ami, JSSC accepted]	SuperAlice [to	be published]
 SuperEllen [Zargha 150 nm 	• Photon timestamping	SuperAlice [to • 110 nm CIS	be published]Multi-functional pixel
 SuperEllen [Zargha 150 nm 32×32 pixels 	 ami, JSSC accepted] Photon timestamping TDC: 205 ps, 8 bit 	SuperAlice [to • 110 nm CIS • 224×272	 be published] Multi-functional pixel TDC: 180 ps, 8 bit
 SuperEllen [Zargha 150 nm 32×32 pixels 44.64 µm, 19.8% FF 	 ami, JSSC accepted] Photon timestamping TDC: 205 ps, 8 bit 1 MHz obs. Rate 	 SuperAlice [to 110 nm CIS 224×272 30.0 μm, 12.9% FF 	 be published] Multi-functional pixel TDC: 180 ps, 8 bit < 1 Kfps

Use of SuperAlice in Quantum Optics Acquisition of SPDC bi-photon

Near field correlations

- Correlated in time o ~at the same time
- Correlated in space o ~in the same place

Far field correlations

- Correlated in time o ~at the same time
- Anti-correlated in momentum o in opposite direction

page

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

Ь

Ь

BERN

Ь

BERN

Ь

RERN

Ь

BERN

 $u^{\scriptscriptstyle b}$

Ь

BERN

Ь

BERN

Ь

BERN

Ь

BERN

Ь

BERN

Conclusions CMOS SPAD arrays for scientific imaging

- SuperAlice: a 224×272-pixel multi-functional image sensor for scientific imaging

 Quantum optics experiments using SPDC photons @ Univ. Bern
- Multi-functional pixel provides flexibility of application

 No sharing of the logic → Fully-parallel 2D acquisitions
- FSI, 110 nm CIS technology can compete with more advanced, stacked technology

 High SNR (PDE vs DCR)
 Low cost
- SUPERTWIN has shown the way towards Super-resolution Quantum Microscope

 We achieved 630 nm resolution (vs 1 µm Rayleigh limit) @ CSEM using SuperEllen
 Further developments are needed, mostly on the entangled photon source side
- Ongoing and future activity:
 - More quantum optics experiments using SuperEllen / SuperAlice across Europe
 - Application of SuperEllen / SuperAlice to FLIM and other applications

10/06/202

Acknowledgements

For specification, design, fabrication, test and experimental activity

- **IRIS**
- Manuel Moreno Garcia (now @ Sony, NO)
- Majid Zarghami
- Matteo Perenzoni
- Luca Parmesan
- Hesong Xu (now @ AMS, CH)

- Prof. André Stefanov
- Dr. Bänz Bessire (now @ IPI, CH)
- Dr. Manuel Unternährer
- Mr. Bruno Eckmann (now @ METAS, CH)

b UNIVERSITÄT BERN

- Solutions for great visions
- Antonio Venezia

- Dr. Dmitri Boiko
- Dr. Valentin Mitev
- Dr. Laurent Balet

Aknowledgments EU for funding

S U P E R T W I N

All Solid-State Super-Twinning Photon Microscope

We thankfully acknowledge the support of the European Commission through the SUPERTWIN project, id. 686731.

International SPAD Sensor Workshop 2020