3D Integrated Front Side Illuminated **Photon-to-Digital Converters**. Status and Applications

Jean-François Pratte¹

Simon Carrier¹, Keven Deslandes¹, Valérie Gauthier¹, Pascal Gendron¹, Michel Labrecque-Dias¹, Philippe Martel-Dion¹, Frédéric Nolet¹, Caroline Paulin¹, Samuel Parent¹, Tommy Rossignol¹, Nicolas Roy¹, Gabriel St-Hilaire¹, Artur Turala¹, Frédéric Vachon¹, Nicolas Viscogliosi¹, Henri Dautet¹, Stéphane Martel³, Robert Groulx³, Réjean Fontaine¹, Fabrice Retiere², Serge A. Charlebois¹

¹Université de Sherbrooke, Institut Interdisciplinaire d'Innovation Technologique (3IT), Sherbrooke, Canada ²Triumf, Vancouver, Canada ³Teledyne-Dalsa, Bromont, Canada

ISSW2020 – Edinburgh, Scotland June 8th – 10th 2020

What is a Photon-to-Digital Converter - PDC

A Photon-to-Digital Converter (PDC) is a SPAD array read out by a CMOS pixelated circuit with embedded digital signal processing.

- The name "PDC" is inspired from "Analog-to-Digital Converter".
- Digital signal processing can be simple or advanced:
 - Photon/Triggered SPAD counts,
 - Time stamping,
 - Timing skew correction, sorting, dark count filter,
 - Advanced algorithms embedded in CMOS for online processing (e.g.: Gauss-Markov estimator).

-Embedded time of arrival estimation for digital silicon photomultipliers with in-pixel TDCs, Lemaire, Nolet, Dubois, C. Therrien, Pratte, Fontaine, NIM:A, Vol. 959, 2020, ISSN 0168-9002, https://doi.org/10.1016/j.nima.2020.163538 -A 256 Pixelated SPAD readout ASIC with in-Pixel TDC and embedded digital signal processing for uniformity and skew correction, Nolet, Lemaire, Dubois, Roy, Carrier, Samson, Charlebois, Fontaine, Pratte, NIM:A, Vol. 949, 2020, ISSN 0168-9002, https://doi.org/10.1016/j.nima.2019.162891

Photon-to-Digital Converter Implementation Schemes

Back side illumination

Front side illumination

Why is front side illuminated PDC relevant? For optimal Single Photon Timing Resolution (SPTR) Ultimate target: sub 10-ps SPTR (SPAD + CMOS readout)

SPAD designed for:

- Minimum drift between photoelectron interaction and the high E field avalanche region
- Minimum drift time variation (= jitter)
- Uniformed E field
- Spectral sensitivity < 650 nm; UV and VUV also of interest (more later in this talk)

SHERBROOKE

jean-francois.pratte@usherbrooke.ca

Why Targeting 10 ps Single Photon Timing Resolution?

For Medical Imaging

Medical Imaging @ Sherbrooke: Positron Emission Tomography

BGO Scanner (1995-2009) ✓ 1st APD-based PET scanner in the world

8-channels front-end board

2.1 mm ~14 µl UNIVERSITÉ DE SHERBROOKE ន

LabPET[™](2005) ✓ 1st APD-based commercial PET scanner

64-channels front-end board and digitizer

1.35 mm ~2.4 µl

128-channels detector nodule 32 pixels APD 0.73 mm 64-channels ~0.4 µl

https://imagingrt.com/ UHR[™](2020) ✓ Brain scanner

1,008 modules 129,024 channels

Time-of-Flight in Positron Emission Tomography Medical Imaging

10 ps FWHM coincidence timing precision => 1.5 mm spatial precision PDC Single Photon Timing Resolution required: < 10 ps FWHM

Advantages of Time-of-Flight Positron Emission Tomography

- Time-of-Flight:
- improve image's contrast,
- lower radiotracer dose,
- real-time imaging (reconstruction-less),
- <u>pediatric care</u>,

- Roadmap toward the 10 ps time-of-flight PET challenge, Physics in Medicine & Biology, 2020, http://iopscience.iop.org/10.1088/1361-6560/ab9500
- https://the10ps-challenge.org/
- SHERBROOKE

Photon-to-Digital Converters for Particle Physics

...to Answer Fundamental Questions about Matter and our Universe.

PDC to Enable Neutrino Physics and Dark Matter Discovery

- Liquid argon (87 K) and liquid xenon (165 K)
- Cryogenic operation PDC operated in noble liquid
 - Low power
- Large area (5 to 200 m²)
- VUV sensitivity required
 - Liquid argon: 125 nm (without wavelength shifter)
 - Liquid xenon: 178 nm

Is the Neutrino its own Antiparticle (Majorana Particle)? Revolutionizing the Standard Model of Particle Physics

Following Art McDonald' 2015 Nobel prize, we know that **neutrino** has **mass**, but the actual mass is **unknown**...

A **measurement** that would shed light both on the **actual mass** of a neutrino and the **origin** of this mass is the detection of a theoretical and extremely rare process known as **neutrino-less double beta decay (0vββ)**.

Additionally, observation of this process could shed light on another fundamental mystery: why in a **Big Bang** that started with **pure energy** we ended up with a **universe** composed almost entirely of **matter** but no **anti-matter**?

Standard model

 2ν double β - decay

 $2 n \rightarrow 2 p + 2 \beta^- + 2 \overline{\nu_e}$

New physics

 $\text{Ov} \text{ double } \beta$ - decay

$$2 n \rightarrow 2 p + 2 \beta^{-} + 0 \overline{\nu_{e}}$$

Lepton number conservation violated

nEXO - the next Enriched Xenon Observatory

- 2 km underground (SNOLAB, Sudbury, Canada, is considered)
 - Earth crust shields for cosmic background
- Measures
 - secondary electrons
 - LXe scintillation light (178 nm)
- Detector volume
 - 1.3 m Ø × 1.3 m
 - 5 t of enriched liquid Xenon-136
 - 165 K
 - 4.5 m² of photodetectors
 - **100 W** power budget

Vessels/Mechanics summary

nEXO – Sherbrooke's Goal : PDC Photodetector Tiles

Development of the PDC Technology:

Parallel R&D on SPAD, 3D Vertical Integration and CMOS readout circuits

Development of the PDC Technology: The SPAD Array

SPAD R&D and Characterization

- 150 mm wafer (custom process using Teledyne-DALSA CCD production line)
- 1x1 to $5x5 \text{ mm}^2 \text{ SPAD}$ array
- 50-100 um diameter **front-side illuminated** shallow P+N type SPAD (~0.4 um depth)
- 4 um width / 22 um depth optical/electrical isolation trench (highly doped polysilicon filling)
- 2D process for parallel SPAD development
- New SPAD received March 2020: Covid-19 is delaying testing

Front-side illuminated shallow p⁺n type SPAD

SPAD R&D and Characterization

SPAD array DCR: ~1000 Hz/mm² (assuming 38 µm SPAD with 60% FF)

VUV Sensitivity Enhancement for Liquid Argon and Liquid Xenon

- Penetration depth @ 175 nm = 5.8 nm
- Delta-doping: surface energy band engineering to cause electron drift toward the high field avalanche region
- Delta doping: increase internal quantum efficiency (~100% IQE in CCDs ▲)
- Delta doping + anti-reflective coating (+) : major PDE improvement
- UdeS-TRIUMF-Lawrence Berkeley Lab collaboration « Towards high efficiency single VUV photon

SHERBROOKE

jean-francois.pratte@usherbrooke.ca

Development of the PDC Technology:

The 3D Vertical Integration Process

Photon-to-Digital Converter : Al-Ge 3D Integration Process and Resistivity Measurement

3D Process overview :

- ✓ SPAD array and trenches (skipped for 3D 1st run)
- ✓ Direct bonding on handle wafer
- ✓ Back side thinning + Back side Ge interconnect
- \checkmark AlGe wafer-to-wafer bonding with fake CMOS
- Front side relief (handle removing)
- CMOS pads opening, dicing
- Measurement of AlGe interconnect <1 Ω
- Towards completion of 3D validation samples

jean-francois.pratte@usherbrooke.ca

Development of the PDC Technology:

Microelectronic Readout Integrated Circuit for Precise Single Photon Timing Resolution (Goal: sub 10 ps)

ASIC Overview (originally for PET)

• TSMC 65 nm CMOS (GP)

ន

- 16×16 pixels in 1.1×1.1 mm² (red box)
- New revision May 2020 in fab
 - 1 TDC shared with 4 SPAD
 - LP instead of GP process flavor

Embedded Digital Signal Processing: Improved Coincidence Timing Resolution and Lower Output Data Bandwidth

Integrated Circuit Embedded Digital Signal Processing Example: Uniformity Correction

Ring Oscillator based Vernier Time-to-Digital Converter

22 μW, 5.1 ps LSB, 5.5 ps RMS jitter Vernier time-to-digital converter in CMOS 65 nm for single photon avalanche diode array, Electronics Letters, April 2020, Vol. 56 No. 9 pp. 424–426,
F. Nolet, N. Roy, S. Carrier, J. Bouchard, R. Fontaine, S.A. Charlebois and J.-F. Pratte

UNIVERSITÉ DE SHERBROOKE

Parameter	This work	Ref. [3]	Ref. [7]	Ref. [5]
technology, nm	65	65	65	350
area, mm ²	0.00151	0.0013	0.068	0.3
LSB, ps	5.1	15	2.2	10
jitter, ps RMS	5.5	6.9	0.6	17.2
event rate, ME/s	1-8	3	2.2	0.3
power, µW	22–41	160	2 300	15,000
pJ/event	22-5.1	32	46	5000
FoM	0.17-0.04	0.29	1.9	25,800
FoM = [Power (μ W) × Jitter (ps RMS) × Area (mm ²] /				
[Event Rate (Mevents/s)]				

$$FOM = \frac{Power \ (\mu W) \times \sigma_{global} \ (ps) \times Area \ (mm^2)}{Events \ Rate \ (Mevents/s)} \left[pJ/event \cdot ps_{rms} \cdot mm^2 \right].$$
(21) 25

Time-to-Digital Converters R&D

- New TDC architecture/concept developed
- Patent written. Final proof read. Should be submitted for evaluation before end of June 2020.

Development of the PDC Technology:

Microelectronic Readout Integrated Circuit for Low Power PDC and Large Area Detectors

CMOS Readout for PDC - Overview

- TSMC 180 nm BCD process
- $5 \times 5 \text{ mm}^2$ active area
- 64 x 64 pixels (4096)
- 78 µm pixel pitch

A single

pixel

ន

UNIVERSITÉ DE SHERBROOKE

- 3-side buttable (for tiles)
- Digital-on-Top design flow

CMOS Readout for PDC – Low Power Architecture

CMOS Readout for PDC – Low Power Architecture

- nEXO operation mode: **INTEGRATION**
- Event driven: each PDC signals the tile controller when a SPAD triggers
- Asynchronous (no event no clock low power)
- $\circ~$ Integration time from 10 ns to 10 μs
- Transmission of total counts (over integration time) when requested by the tile controller
- Analog monitor for demonstration

CMOS Readout for PDC – Low Power Architecture

- nEXO operation mode: **INTEGRATION**
- Event driven: each PDC signals the tile controller when a SPAD triggers
- Asynchronous (no event no clock low power)
- $\circ~$ Integration time from 10 ns to 10 μs
- Transmission of total counts (over integration time) when requested by the tile controller
- Analog monitor for demonstration

- LAr operation mode: **CONTINUOUS SAMPLING**
 - Synchronous operation by a clock
 - Flags the controller to signal counts
 - Low flag jitter (<250 ps) to allow time-of-flight
 - 128 FIFO depth for transmission on request
 - FIFO sampling bins: short (10 ns) and long frames (1 µs) to allow PSD (Pulse Shape Discrimination)

Measurement Testbench – Toward Tile Integration

Photon-to-Digital Converter Measurements: Flag, Digital Sum and Analog Monitor Corroborated

ន

Conclusion

- No fundamental limitation to build Front side illumination Photon-to-Digital Converter, but it is a great engineering challenge.
- First PDC expected in 2021.
- SPAD array, 3D integration and readout electronics developed and optimized in parallel.
 - Microelectronics readout for particle physics: wafer level production winter 2021.
 - SPAD R&D within Teledyne-DALSA.
 - New masks set in fabrication (optimized SPAD).
 - New SPAD arrays last March 2020: Covid-19 delay.
- PDC architecture flexible and versatile: they can be used/tailored for your application.
- (We are recruiting! Ph.D. and Postdoc.)
- Back side illumination SPAD array under design for VUV to NIR.

Selected Publications from our Team

- Roadmap toward 10 ps time-of-flight PET challenge. (2020). Lecoq, P.; Morel, C.; Pratte, J-F. et al. *Physics in Medicine and Biology*. Institute of Physics and engineering in Medicine.
- 22 μW, 5.1 ps LSB, 5.5 ps RMS jitter Vernier time-to-digital converter in CMOS 65 nm for single photon avalanche diode array. (2020). Nolet, F.; Roy, N.; Carrier, S.; Bouchard, J.; Fontaine, R.; Charlebois, S. A.; Pratte, J-F. *ELECTRONICS LETTERS*. 56(9): 424-426.
- Embedded time of arrival estimation for digital photomultipliers with in-pixel TDCs. (2020). Lemaire, W.; Nolet, F.; Dubois, F.; Corbeil Therrien, A.; Pratte, J-F.; Fontaine, R. *Nuclear Inst. And Methods in Physics Research, A.* 163538
- Dark Count Resilient Time Estimators for Time-of-Flight PET. (2020). Lemaire, W.; Corbeil Therrien, A.; Pratte, J-F.; Fontaine, R. *IEEE Transactions on Radiation and Plasma Medical Sciences*. 4(1): 24-29
- A 256 Pixelated SPAD Readout ASIC with in-Pixel TDC and Embedded Digital Signal Processing for Uniformity and Skew Correction. (2019). Nolet, F.; Lemaire, W.; Dubois, F.; Carrier, S. G.; Samson, A.; Charlebois, S. A.; Fontaine, R.; Pratte, J-F. *Nuclear Inst. And Methods in Physics Research, A.* 162891
- Record breaking timing resolution with a room temperature single photon detector Two photons timing resolution of record-breaking low jitter SPADs measured by Time Tagger Ultra HiRes. (2019), Application Note Si-0004. M. Kolarczik, H. Fedder, M. Wick, F. Nolet, S. Parent, N. Roy, and J.-F. Pratte
- Single Photon Avalanche Diodes and Vertical Integration Process for a 3D Digital SiPM using Industrial Semiconductor Technologies. (2nd position NSS student competition oral prensentation). (2018). Parent, S.; Côté, M.; Vachon, F.; Groulx, R.; Martel, S.; Dautet, H.; Charlebois, S. A.; Pratte, J-F. 2018 IEEE NSS-MIC Conference Record. 2018 IEEE NSS-MIC, Sydney, Australia.
- Energy discrimination for positron emission tomography using the time information of the first detected photons. (2018). Corbeil Therrien, A.; Lemaire, W.; Lecoq, P.; Fontaine, R.; Pratte, J-F. *Journal of Instrumentation*. 13(1): p01012.
- Quenching Circuit and SPAD Integrated in CMOS 65 nm with <u>7.8 ps FWHM Single Photon Timing Resolution</u>. (2018). Nolet, F.; Parent, S.; Roy, N.; Mercier, M.-O.; Charlebois, S. A.; Fontaine, R.; Pratte, J-F. *MDPI Instrument Special Issue Advances in Particle Detectors and Electronics for Fast Timing*. 2(4)

Selected Publications from our Team

- **Digital SiPM channel integrated in CMOS 65 nm with 17.5 ps FWHM single photon timing resolution**. (2017). Nolet, F. and Dubois, F. and Roy, N. and Parent, S. and Lemaire, W. and Massie-Godon, A. and Charlebois, S. A and Fontaine, R. and Pratte, J.-F. *Nuclear Instruments and Methods in Physics Research Section A*, 912: 29-32.
- **TDC Array Trade-Offs in Current and Upcoming Digital SiPM Detectors for Time-of-Flight PET**. (2017). Tetrault, M.-A.; Lemaire, W.; Corbeil-Therrien, A.; Fontaine, R.; Pratte, J.-F. *IEEE Transactions on Nuclear Science*. 64(3): 925-932.
- Low Power and Small Area, 6.9 ps RMS Time-to-Digital Converter for 3D Digital SiPM. (2017). Roy, N. and Nolet, F. and Dubois, F. and Mercier, M-O. and Fontaine, R. and Pratte, J.-F. *IEEE Transactions on Radiation and Plasma Medical Sciences*. 10(6): 486-494.
- A 2D Proof of Principle Towards a 3D Digital SiPM in HV CMOS with Low Output Capacitance. (2016). Nolet F, Rhéaume V-P, Parent S, Charlebois SA, Fontaine R, Pratte J-F. *IEEE Transactions on Nuclear Science*. 63(4): 2293-2299.
- Implementation study of Single Photon Avalanche Diodes (SPAD) in HV CMOS 0.8 µm technology. (2015). Berube BL., Rhéaume V-P., Parent S., Maurais L., Corbeil Therrien A., Charlebois SA., Fontaine R., Pratte J-F. *IEEE Transactions on Nuclear Science*. 62(3): 710-718.
- Modeling of Single Photon Avalanche Diode Array Detector for PET Applications. (2014). Corbeil Therrien A., Bérubé B.-L., Charlebois S., Lecomte R., Fontaine R., Pratte J.-F. *IEEE Transactions on Nuclear Science*. 61(1): 14-22.
- Dark Count Impact for First Photon Discriminators for SPAD Digital Arrays in PET. (2014). Tétrault M.-A., C. Therrien A., Desaulniers Lamy A., Boisvert A., Fontaine R., Pratte J.-F. *IEEE Transactions on Nuclear Science*. 62(3): 719-726.
- **Real-Time Discreet SPAD Array Readout Architecture for Time of Flight PET**. (2014). Tétrault M.-A., Desaulniers Lamy É., Boisvert A., Thibaudeau C., Dubois F., Fontaine R., Pratte J.-F. *IEEE Transactions Nuclear Science*. 62(3): 1077-1082.

A Team's Work

Université de Sherbrooke

- Serge Charlebois
- Réjean Fontaine
- Roger Lecomte
- Henri Dautet
- Julien Sylvestre
- David Danovitch
- Caroline Paulin
- Catherine Pepin
- Danielle Gagné
- Étienne Paradis
- Étienne Grondin
- Konin Koua
- Simon Carrier
- Valérie Gauthier

- Nicolas Rov
- Frédéric Nolet
- Samuel Parent
- Keven Deslandes
- Audrey Corbeil Therrien
- Benoit-Louis Bérubé
- Marc-André Tétrault
- Frédéric Vachon
- Tommy Rossignol
- Gabriel St-Hilaire
- Jacob Deschamps
- Xavier Bernard
- Thomas Dequivre
- Philippe Martel-Dion William Lemaire

- Maxime Côté
- Vincent Philippe Rhéaume
- Étienne Desaulniers Lamy
- Alexandre Boisvert
- Michel Labrecque-Dias
- Pascal Gendron
- Artur Turala
- Arnaud Samson
- Jonathan Bouchard
- Frédérik Dubois
- Marc-Olivier Mercier
- Frédéric Bourque

Fonds de recherche sur la nature et les technologies * *

Collaborators

- Paul Lecoq
- Fabrice Retiere
- nEXO Collaboration
- nEXO Canada
- Simon Viel

Teledyne-DALSA Semiconducteur Inc

- Claude Jean (CEO)
- Stephane Martel
- Robert Groulx

• Charles Richard

The End

