

CMOS SPAD sensors with embedded smartness

Ion Vornicu, Ricardo Carmona-Galán and Ángel Rodríguez-Vázquez ivornicu@imse-cnm.csic.es

International SPAD-Sensor Workshop; Edinburg, Scotland (UK) June 2020

Instituto de Microelectrónica de Sevilla

R&D Center ran by University of Seville and the Spanish Council of Research

- Part of the Spanish Microelectronic Center
- Specialized on Mixed-Signal Systems and Smart Sensory Systems

Human Resources

- About 90 people:
 - ⊙ US ~60%
 - ⊙ CSIC ~40%
 - Permanent ~49%
 - ⊙ Temporary ~51%
 - ⊙ Women ~26%
 - ⊙ Men ~74%

Laboratory Equipment:

 Labs for logical, electrical, functional and thermal characterization of mixed signal, RF and optoelectronic ICs

Group on Intelligent Interface Circuits and Sensory Systems (I2CASS)

- Group Head: Prof. Ángel Rodríguez-Vázquez
- Scope of the R&D Activities:
 - Focus on Complete Smart-Sensory Systems
 - Aligned to ITRS and prevalent micro-electronic trends
 - Innovation at chip architecture and design levels
 - Innovation at system embedding and applications
 - Major emphasis on vision sensors and bio-medical recording and stimulation systems
 - Balance between academic production and technology transfer
 - Several Mixed-signal AFEs in commercial exploitation for highspeed communications and automotive sensors
 - Three EBTs emerged from the group; all in operation

Sensors:

- Bio-inspired sensor architectures for highspeed energy-efficient vision systems:
 - Feature-extraction based sensors
- Event-driven and dynamic vision sensors
- High-Dynamic range and Low-noise image sensors
- Vision sensors with Deep Learning at the Edge
- SPAD-based imagers and vision sensors

June 9, 2020

Ion Vornicu – CMOS SPAD sensors with embedded smartness - ISSW2020

3

- LiDAR challenges
- **2**Active illumination
- **3**SPAD detectors
- **4**Noise suppression
- **5** Low power architecture
- **6**ToF data processing
- Conclusions

LiDAR challenges

- **2**Active illumination
- **B**SPAD detectors
- **O**Noise suppression
- **6** Low power architecture
- **6**ToF data processing
- **O**Conclusions

June 9, 2020

Ion Vornicu – CMOS SPAD sensors with embedded smartness - ISSW2020

OLiDAR challenges

Active illumination

- **B**SPAD detectors
- **O**Noise suppression
- **6** Low power architecture
- **6**ToF data processing
- **O**Conclusions

Active illumination

8

Active illumination

Edge emitting laser emit elliptical beams

Pros:

- Long range
- Higher efficiency

Cons:

- Hard to obtain uniform pattern
- Limited duty cycle (0.1% without cooling)

Addressable VCSEL (Philips)

Pros:

- Lower switching currents
- Uniform illumination Cons:
- Lower efficiency
- Temperature stability
- Smaller output power

• LiDAR challenges

2Active illumination

3SPAD detectors

- **4** Noise suppression
- **6** Low power architecture
- **6**ToF data processing
- **O**Conclusions

SPAD detectors for LiDAR: EQE

June 9, 2020

Ion Vornicu - CMOS SPAD sensors with embedded smartness - ISSW2020

11

Source of electrical crosstalk:

- Charge carriers generated by light
- Charge carriers generated by avalanche (negligible)

IMSE-CNN

SPAD detectors for LiDAR: Crosstalk (2)

Radiative recombination in PW/DNW

Source of optical crosstalk:

Radiative recombination

RR Rate (1/cm3·s)

PWell/Deep-NWell SPAD junction:

Schematic of test pixel:

Source: I. Vornicu et al., ESSDERC 2019

Dashed line represent Arrhenius eq.:

$$DCR = Aexp\left(-\frac{E_A}{k_BT}\right)$$

- 10 chips, D1-D16 ×60 samples
- The large the active area, the larger the device-device deviation

IMSE-CNN

D3 device

SPAD detectors for LiDAR: State-of-the-art comparison

	Veerappan '16	Lindner '17	Xu '17	Moreno '18	Hutchings'19	This work
Tech. [nm]	180nm	65 CIS-BSI	150 CIS	110 CIS	65 CIS-BSI	110 CIS
SPAD	P-epi/BN ⁽²⁾	PW/DNW	P+/NW	P+/LDNW ⁽¹⁾	PW/DNW	PW/DNW
V _{BD} [V]	25.5	12	18	20	12	18
Area [μm²] (φ)	113(12µm)	251(16µm)	97(10µm)	385(20µm)	9.18µm (pitch)	78(10µm)
Median DCR [Hz/µm²]	0.3@3V	1.6@4.4V	0.4@3V	0.18@3V	0.23@1.5V	0.4@3V
PDP peak [%] @ Ve, λ	33@3V, 480nm	30@4.4V, 660nm	27@3V, 450nm	52@6V, 455nm	28@1.5V, 615nm	64@3V, 500nm
PDP [%] @ 850nm	9@12V	13@4.4V	7.5@5V	5@6V	15@3V	10@5V
AP @ Ve, DT	7.2@11V, 300ns	0.08@4.4, 8ns	0.85@3V, 150ns	NA	0.4@NA	0.5@3V, 5µs
Jitter [ps] @ Ve, λ	97@11V, 405nm	75 @ 4.4V, 700nm	42@4V, 831nm	80@4V, 831nm	70@2V, 773nm	92 ⁽³⁾ @3V 850nm

⁽¹⁾P+/LDNW stands for P+/low doped NW; ⁽²⁾P-epi/BN stands for P-epi/buried N; ⁽³⁾It represents the total FHWM jitter

- C. Veerappan, E. Charbon, "A low dark count p-i-n diode based SPAD in CMOS technology", Trans. on Electron Devices, Vol. 63, No. 1, 2016.
- S. Lindner et al., "A high-PDE backside-illuminated SPAD in 65/40nm 3D IC CMOS pixel with cascoded passive quenching and active recharge", Electron Dev. Letters, Vol. 38, No. 11, pp. 1547-1550, Nov. 2017.
- H. Xu et al., "Design and characterization of a p+/n-well SPAD array in 150nm CMOS process", Opt. Express, Vol. 25, No. 11, May 2017.
- M. Moreno-Garcia et al., "Low-noise single photon avalanche diodes in a 110nm CIS technology", ESSDERC, pp. 94-97, Sept. 2018.
- S. W. Hutchings, "A Reconfigurable 3-D-Stacked SPAD Imager With In-Pixel Histogramming for Flash LIDAR or High-Speed Time-of-Flight Imaging, J. of Solid-State Circ., Vol. 54, No. 11, Nov 2019.
- I. Vornicu et al., "Low-Noise and High-Efficiency Near-IR SPADs in 110nm CIS Technology", ESSDERC, pp. 250-253, Sept. 2019.

June 9, 2020

Ion Vornicu - CMOS SPAD sensors with embedded smartness - ISSW2020

OLiDAR challenges

- **2**Active illumination
- **B**SPAD detectors
- **4**Noise suppression
- **6** Low power architecture **6** ToF data processing
- **Conclusions**

Noise suppression

*Coincidence detection techniques:

- M. Beer et al., "Background Light Rejection in SPAD-Based LiDAR Sensors by Adaptive Photon Coincidence Detection", Sensors, 18(12), 4338, 2018
- M. Perenzoni et al., "A 64×64-Pixels Digital Silicon Photomultiplier Direct TOF Sensor With 100-MPhotons/s/pixel Background Rejection and Imaging/Altimeter Mode With 0.14% Precision Up To 6 km for Spacecraft Navigation and Landing", J. of Solid-State Circuits, Vol. 52, No. 1, Jan. 2017

June 9, 2020

Ion Vornicu - CMOS SPAD sensors with embedded smartness - ISSW2020

Total active area of macro-pixel: 420 µm²

Noise suppression: Crosstalk

6.5% - same DNW

0.23% - DNWs separated @ 16µm

Noise suppression: ToF histogram noise floor

CD-2×SPADs; Tacq = 1s

- Background light: 162kcps
- Signal: 2.1kcps

- FD-2×SPADs; Tacq = 1s
- Background light: 2.5Mcps
- Signal: 33kcps

- NO optical filter
- λ = 640nm
- CTW = 50ns

June 9, 2020

Noise suppression: Depth map

Tacq = 10ms; 2 SPADs activated

- **O**LiDAR challenges
- **2**Active illumination
- **B**SPAD detectors
- **4** Noise suppression
- **5** Low power architecture
- **6** ToF data processing
- **O**Conclusion

Block diagram of conventional OR pulsecombining scheme

Block diagram of the proposed macro-cell

Pulse overlapping due to uncorrelated light

$$P(k,\Delta T) = \frac{\left[\left(\sum_{n=1}^{k} EPR_n\right)\Delta T\right]^k}{k!} e^{-\left(\sum_{n=1}^{k} EPR_n\right)\Delta T}$$

No. of pulse overlaps =
$$P(k, \Delta T) \frac{MT}{DT}$$

Power efficiency (PE) for *uncorrelated light*; M_{2-SCn} size is (a) $W/L = 2\mu m/360nm$; (b) $W/L = 600nm/1\mu m$

$$PE = \frac{P_{conv} - P_{prop}}{P_{conv}} * 100$$

Low power architecture: Correlated light

Pulse overlapping due to correlated light

Power efficiency for *correlated light*; M_{2-SCn} size is (a) $W/L = 2\mu m/360nm$; (b) $W/L = 600nm/1\mu m$;

- DT = 300ns
- **λ** = 905nm
- □ PDP = 5%

- **O**LiDAR challenges
- **2**Active illumination
- **B**SPAD detectors
- **4** Noise suppression
- **6** Low power architecture
- **6**ToF data processing
- **O**Conclusions

ToF data processing: Gen1 SPADCAM @ IMSE-CNM

Source: i) US-CSIC IMSE CVIS Lab @ I. Vornicu et al. *IEEE ISCAS,* 2017 ii) US-CSIC IMSE CVIS Lab @ I. Vornicu et al. *IEEE TCAS-I,* 2017

L	CMOS technology	180nm-UMC
nso	Functionality	D-ToF/ Ph. Cnt.
e se	Shutter type	Global
age	Format	64×64
Ē	Fill factor	2.7%
PAD	Output	Serial @ 50MHz
S	Time gate (programmable)	2D – 87µs; 3D – 400ns

SPA D detector & AQR	Туре	P+/N-WELL	
	PDE (a) λ	6.5% ^(*) @ 520nm	
	Avg. DCR @ Ve	42kHz ^(**) @ 1V	
	Dead time	5ns- 500ns	
	Diameter	14µm	
	Active area	113µm ²	
	FWHM jitter	200ps	
	T	In-pixel	
	Гуре	In-pixel	
	Architecture	VCRO-based	
	Architecture Time resolution/Range	VCRO-based 147ps/ 297ns	
DC	Architecture Time resolution/Range No. of bits/ ENOB	VCRO-based 147ps/ 297ns 11/ 9	
TDC	Architecture Time resolution/Range No. of bits/ ENOB Area	In-pixel VCRO-based 147ps/ 297ns 11/ 9 1740µm²	
TDC	TypeArchitectureTime resolution/RangeNo. of bits/ ENOBAreaINL/ DNL	In-pixel VCRO-based 147ps/297ns 11/9 1740µm² 3/0.55	

ToF data processing: FPGA based ToF histogramming

Iow PDE

US-CSIC IMSE CVIS Lab @ IEEE Sensor J, 2017 Source:

Complete histogram requires:

80Mb for only 4kpixels on 11bits 1.25Gb for only 4kpixels on 15bits

ToF data processing: Hardware histograms compression (1)

ToF histogram features:

- \Box Memory footprint scales with 2^N , N = number of bits
- □ ToF information is located on a small fraction of bins

Challenges

- Large compression rate
- Unaltered frame rate
- □ Free of uncertainty errors

*Histogram compression techniques:

- A. Sharma et al., *Patent US 2017/52 A1*, Apple Inc., Cupertino, CA (US)
- A. Erdogan et al., Patent WO 2018/122560 A1, University of Edinburgh (GB)
- I. Vornicu et al. IEEE Sensors J., Vol. 19, No. 6, March 2019;
- C. Zhang et al. IEEE J. of Solid-State Circ., Vol. 54, No. 4, April 2019

ToF data processing: Hardware histograms compression (2)

June 9, 2020

Ion Vornicu – CMOS SPAD sensors with embedded smartness - ISSW2020

- **O**LiDAR challenges
- **2**Active illumination
- **B**SPAD detectors
- **4** Noise suppression
- **6** Low power architecture
- **6**ToF data processing

Conclusions

Active illumination

- Compliant with eye safety standards
- Shorter laser pulses combined with scanning
- Temperature stability with higher duty cycle
- Selectable VCSEL arrays
- SPAD detector
 - High PDP most wanted @ laser wavelength
 - CD improves noise floor but affects cPDP as well
 - Sharing recharge circuits improve FF, holding the advantages of active quenching recharge approach
- Sensor architecture
 - Smart OR combining scheme may save power
 - Adapted to the illumination setup
- On-chip ToF processing
 - Data throughput challenge
 - Histogram compression by centering the acquisition around the ToF data

This work has been funded by the Office of Naval Research (USA) ONR, grant No. N00014-19-1-2156 and by the Spanish Ministry of Economic Affairs and Digital Transformation (MINECO)

Thanks for your attention !

Instituto de Microelectrónica de Sevilla

