Raman spectroscopy utilizing a time resolving CMOSSPAD line sensor with a pulsed laser excitation

Associate Professor Ilkka Nissinen

Doctoral student Jere Kekkonen Doctoral student Tuomo Talala

Circuits and Systems Research Unit (CAS), Faculty of Information Technology and Electrical Engineering

Acknowledgements Academy of Finland grants 314404 and 323719

Outline

- \circ Motivation
 - Applications
 - Challenges in CW-based Raman spectroscopy
- Time gated Raman spectroscopy
- Advantages using CMOS-based Sensors
- $\circ~$ Operation of SPAD with a TDC
- Depth resolving Raman spectroscopy
- Timing skew and distortion
- Timing skew compensation
- Measurement result
 - High fluorescent sample, Depth resolving Raman, Chemical imaging of human teeth
- Conclusions

Motivation

High fluorescence background!

- How to solve Fluorescence background problem in Raman spectroscopy?
- How to achieve depth derivation and profiling with fluorescence suppression?

Time-gated Raman spectroscopy

[1] R. P. Van Duyne, D. L. Jeanmaire, and D. F. Shriver, "Mode-lockedlaser Raman spectroscopy. New technique for the rejection of inter-fering background luminescence signals," Anal. Chem., vol. 46, no. 2, pp. 213–222, Feb. 1974.
[2] P. Matousek et al., "Fluorescence suppression in resonance Raman spectroscopy using

a high-performance picosecond Kerr gate," J. Raman Spectrosc., vol. 32, no. 12, pp. 983– 988, Dec. 2001.

Advantages of using CMOS technology

- Raman scattering probability low => Single-photon counting with SPAD
- Line sensor can be integrated into the same die with a time gating and TDC electronics => faster measurements
- Additionally enabling fluorescence life time measurement over full spectral range

 λ = 532 nm Pulse width =150 ps Pulse rate = 350 kHz Pulse energy = 1µJ

9/24

[3] I. Nissinen et. Al.," A Sub-ns Time-gated CMOS Single Photon Avalanche Diode Detector for Raman Spectroscopy," Proc. of ESSDERC'11, 12-16 Sept. 2011, Helsinki, Finland, pp. 375 - 378.
[4] I. Nissinen, J. Nissinen, P. Keränen, D. Stoppa and J. Kostamovaara, "A 16x256 SPAD Line Detector with a 50-ps, 3-bit, 256-channel Time-to-Digital Converter for Raman Spectroscopy," *IEEE Sensors Journal*, vol. 18, no. 9, pp. 3789-3798, 2018.

Block diagram 16x256 SPAD array with TDCs

Nominal LSB = 100ps (can be adjusted within 50ps -200 ps)

Raman spectra and fluorescence lifetime by post processing data

Timing skew and distortion

- Mismatch =>Time gate width variation => distortion
- Distortion directly proportinal to Fluorescence intensity
- SDR cannot be improved by increasing integration time
 => Compensation required

[9] T. Talala and I. Nissinen, "Timing Skew Compensation Methods for CMOS SPAD Line Sensors Used for Raman Spectroscopy," *2019 IEEE SENSORS*, Montreal, QC, Canada, 2019, pp. 1-4.

Timing Skew compensation method

Raman spectometer is used similarly as in normal Raman measurement but with fluorescence sample (Erythrosin B) with lifetime of 90 ps (IRFs at every spectral point)

- With skew the peak position of IRF is variating as a function of the time skew of channel
- Weighted averages of channels (wavenumber) are calculated
- Used to compensate for the distortion at every wavenumber

Application areas SPAD-based Raman spectroscopy

[5] Y. Maruyama, J. Blacksberg and E. Charbon, "A 1024 x 8, 700-ps time-gated SPAD line sensor for planetary surface exploration with laser Raman spectroscopy and LIBS ", *IEEE J. Solid-State Circuits*, vol. 49, no. 1, pp. 179-189, Jan. 2014.

[6] K. Ehrlich et al., "PH sensing through a single optical fibre using SERS and CMOS SPAD line arrays", *Opt. Express*, vol. 25, no. 25, pp. 30976-30986, Dec. 2017.

[7] T. Lipiäinen et al., "Time-gated Raman spectroscopy for quantitative determination of solid-state forms of fluorescent pharmaceuticals", *Anal. Chem.*, vol. 90, no. 7, pp. 4832-4839, Apr. 2018.

[8] A. Usai, N. Finlayson, C. D. Gregory, C. J. Campbell and R. K. Henderson, "Separating fluorescence from Raman spectra using a CMOS SPAD TCSPC line sensor for biomedical applications", *Proc. SPIE 10873 Optical Biopsy XVII: Toward Real-Time Spectroscopic Imaging and Diagnosis*, 2019.

Measurement results

High fluorescence sample

Sesame seed oil => high fluorescence level and short life time ~2ns

Results of depth resolving Raman spectrometer

> Photon collection was not optimized by using proper optics

Raman spectra as a function of a depth

 \mathbf{N}

ЦЦ

Delay difference => 4.2 cm separation between samples

[10] J. Kekkonen, J. Nissinen and I. Nissinen, "Depth Analysis of Semi-Transparent Media by a Time-Correlated CMOS SPAD Line Sensor-Based Depth-Resolving Raman Spectrometer," in IEEE Sensors Journal, vol. 19, no. 16, pp. 6711-6720, 15 Aug.15, 2019.

[11] J. Kekkonen, J. Nissinen, J. Kostamovaara and I. Nissinen, "Distance-Resolving Raman Radar Based on a Time-Correlated CMOS Single-Photon Avalanche Diode Line Sensor," *Journal of Sensors*, vol. 18, no. 10, 3200, 2018.

Some other application areas for timresolving Raman spectroscopy

Chemical imaging of human teeth

Collaboration with Prof. Vuokko Anttonen and Dr. Mikko Finnilä

Time-gated Raman in mapping of eudialyte and catapleiite

Collaboration with Dr. Saara Kaski and Dr. Häkkänen and M.Sc. Sari Romppanen

[12] J. Kekkonen, M. A. J. Finnilä, J. Heikkinen, V. Anttonen and I. Nissinen, "Chemical imaging of human teeth by a time-resolved Raman spectrometer based on a CMOS single-photon avalanche diode line sensor," Analyst 144 (20), pp. 6089-6097, 2019.

[13] S. Romppanen, H. Häkkänen, J. Kekkonen, J. Nissinen, I. Nissinen, J. Kostamovaara and S. Kaski, "Time-gated Raman and laser-induced breakdown spectroscopy in mapping of eudialyte and catapleiite," Journal of Raman spectroscopy, early view, May 2019.

- Time-resolving CMOS-based SPAD array can be used effectively to suppress fluorescence background in a pulsed Raman spectroscopy
- Line sensor with time-gating and time interval measurement units can be fabricated in the same die to decrease the size and complexity of Raman sensor
- Timing skew compensation method is needed to achieve proper SDR with high fluorescent samples
- A Pulsed laser and time-resolving SPAD sensor enables a depth-resolving Raman spectroscopy with sub-cm accuracy.