

ISSW20: The International SPAD Sensor Workshop

LFoundry: SPAD, status and perspective

Presented by Giovanni Margutti giovanni.margutti@Lfoundry.com LFoundry S.r.I. All rights reserved.

> About LFoundry

FAB history, products, process capability

SIPMs in LFoundry

history and main results

SPAD integrated in LFoundry CMOS PDK

- history and main results
- > a special case: SUPERTWIN

Conclusion

LEOUUDAR LEOUUDAR LEOUUDAR LEOUUDAR LEOUUDAR LEOUUDAR

Support area

21000 m ²

Location:	Avezzano, Italy (center of Italy / east of Rome)		
Founded	May 1989		
Headcount	~ 1.500 (>200 R&D and Process & Equip. Engineers)		
Owner History	1989 Texas Instruments, DRAM 6" \rightarrow 8"		
	1998 Micron Technology, DRAM 8" \rightarrow CIS Since 2005		
	2013 Lfoundry		
	2017 SMIC		
	2019 SPARC		
Products	Optical Sensors (CIS, PD, SiPM), Automotive, Secure, Power, Customer Specific		
Capacity	40.000 wafer	/ month	
Clean Room	ISO3 (1),	11.000m2	
	ISO4/5,	1.000m2	
Around 800 t	ools installed		
More than 900	More than 900 gases and chemicals		
Certifications	ISO 9001:2008, Quality Management		
	ISO 16949:20	09, Automotive Quality Management	
	OHSAS 18001:1999 Health & Safety Management		
	ISO 14001:2003, Environmental Management		
	ISO/IEC 15408 Security common criteria (EAL 5+)		

3

Confidential - LFoundry S.r.I. All rights reserved.

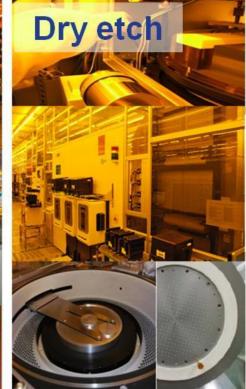
Production Area, 23000 m²

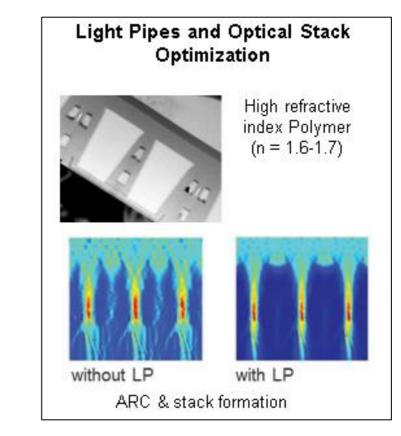
11000 m²

Clean Room Area,

	Key Feature	
Avezzano Fab Capability	65nm Smallest Litho Feature 90nm Volume Production AI and Cu Metallization	
Basic FOT CMOS Platform	Technology Nodes: 150nm 110nm	
Technology Specialization	Optical Sensors (CIS, Discrete PD, SiPM) Analog and Mixed Signal Smart Power (LDMOS)	
Special Modules	Back-side Process Wafer Thinning and Stacking Lithographic Stitching	

Manufacturing Fab



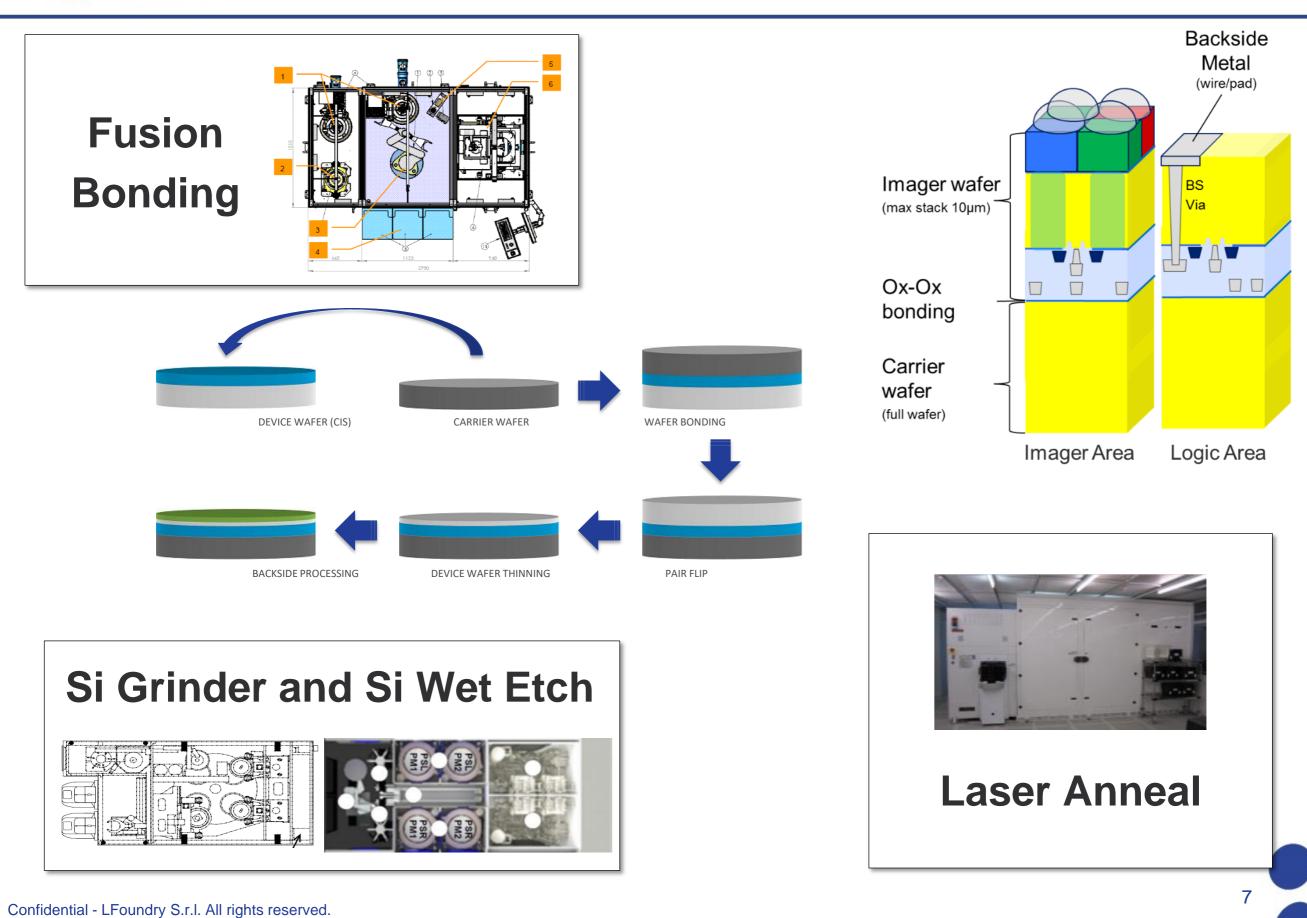


Process/Development capability

- Customized wafer type
- Deep Implant with high aspect ratio masks
- Bask Side process capability (see next);
- > 1D/2D stitching
- Deep Trench Isolation (1:15)
- Optical stack simulation/optimization
- > 2D, 3D TCAD simulation
- Analytic service

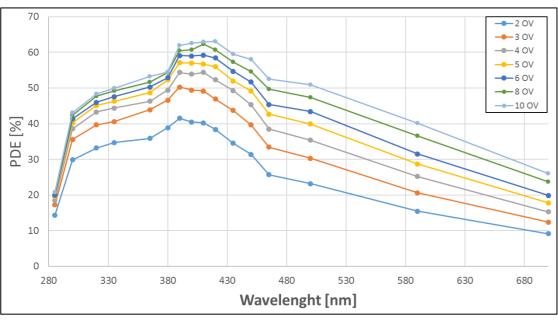
TEM/STEM: TECNAI G2 F30 S-Twin equipped with Lorentz Lens, Bi-prism. EELS and EDX detector. Holography, Tomography

Wafer Level Reliability Equipment

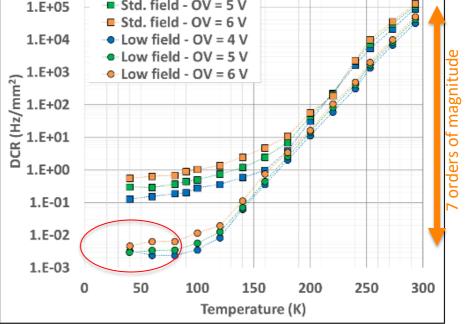

Focus Ion Beams 2 x Dual Beam FEI Strata 235

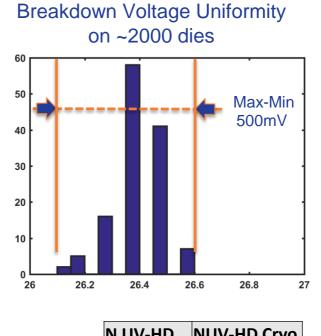
Scanning Electron Microscopes 2 x Hitachi 4700 1 x Hitachi 4800 (with EDX) 2 x FEI Nova-600 Nanosem

SIPM in LFoundry – brief history


- LFoundry Fab especially designed to ensure low level of contaminant thus particularly suitable to produce optical sensors (high volume production of CIS since 2005)
- In 2016 the interest for SIPMs as alternative to PMTs was increasing in the science field as well as in other fields, like biomedical, automotive, etc..
- At the same time FBK developed and produced SIPMs, but their 6" line was not able to support large volume of products.
- Based on the above reasons, LFoundry and FBK agreed that a technology transfer would have been an opportunity to make the technology available for large quantity orders and for future developments exploiting 8-inches line process capability.
- Starting from 2016 several SIPMs technology flavours have been transferred from FBK to LFoundry. NUV-HD (near ultraviolet, high density) SIPM was the first one and after minor adjustments, the results were found to be aligned to FBK and robust enough (in terms of reproducibly, process variability) to be produced in large volumes.
- > A snapshot of the main characteristics is shown in the next slides

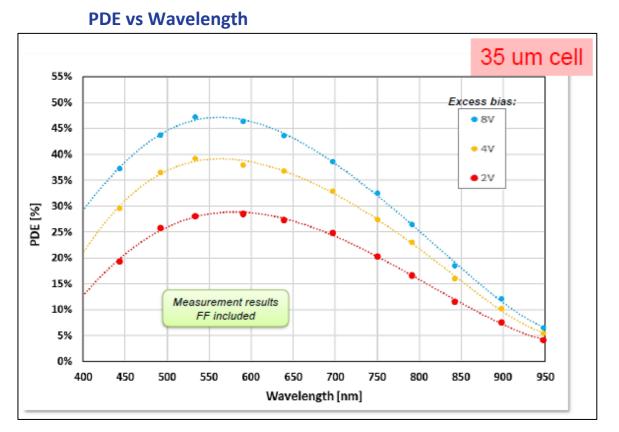
Analog SiPM: NUV-HD / NUV-HD cryo

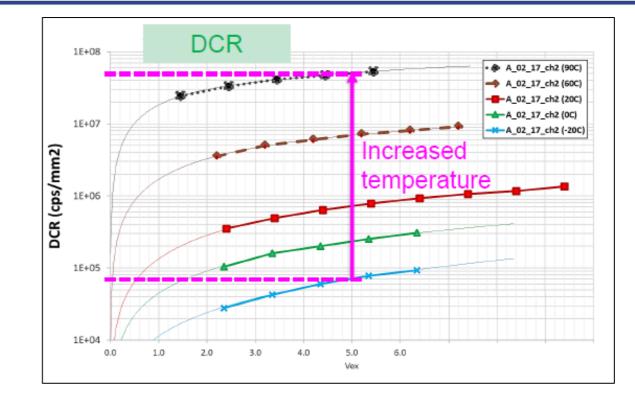

Parameter	NUV-HD @ 25C	NUV-HD-Cryo @ 25C
Cell Size	15 - 40 μm	15 - 40 μm
Fill Factor	55% - 85%	55% - 85%
Breakdown Voltage	26.5 V	32.5 V
BV Temp Coefficient	28 mV/ºC	34 mV/ºC
PDE (420nm) (5 Vex)	> 55%	> 50%
Gain	> 10 ⁶	> 10 ⁶
Peak PDE λ	410 nm	410 nm
DCR (20°C, 5Vex)	< 150 kHz/mm2	< 150 kHz/mm2
DiCT	20%	20%
DeCT + AP	2%	2%
SPTR (FWHM)	~ 20ps (single cell)	~ 20ps (single cell)


FBK SiPM techn. @ LF manufacturing line

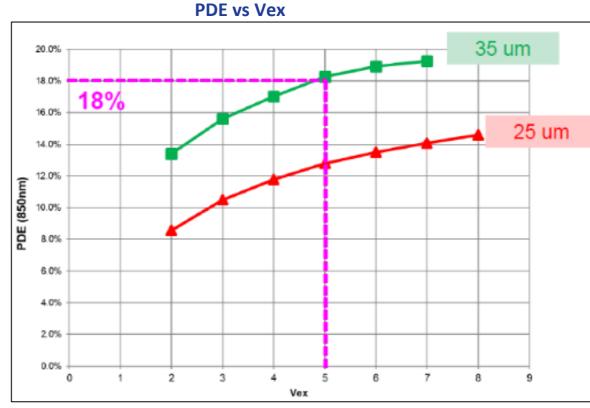
Low Field version enables very low DCR at cryogenic temperatures 1.E+06 Std. field - OV = 4 V Std. field - OV = 5 V 1.E+05 Std. field - OV = 6 V 1.E+04 Low field - OV = 4 V Low field - OV = 5 V 1.E+03 1.E+02 1.E+02 1.E+01 1.E+01 1.E+00 Low field - OV = 6 V magi 5 S 1.E+00 ē Þ 1.E-01

Band to band tunnelling probability (main component at low temperature) reduced on low field flavour


	N UV-HD	NUV-HD Cryo
BV (V)	26.51	32.53
St. Dev. (V)	0.071	0.075
N	> 200000	>20000



Analog SiPM: NIR-HD Technology


Parameter	Value @ Room T	
Cell Size	25 - 35 μm	
Fill Factor	75% – 85 %	
Breakdown Voltage	27.8 V	
BV Temp Coefficient	* 28mV/ºC	
PDE (850nm, 5Vex)	13-16%	
Gain	> 10 ⁶	
Peak PDE λ	545 nm	
DCR (20°C, 5Vex)	< 800 KHz/mm2	
DiCT	14% - 22%	
DeCT + AP	12% - 18%	
SPTR (FWHM)	~ 60ps (single cell)	

*good results for an high depleted region cell

Data from FBK silicon Technology implemented in LF line

- The collaboration with FBK was also fruitful for the integration of SPAD cells into the LFoundry PDK (on both 110 nm and 150 nm technology nodes).
- Two flavors of cells have been developed using MPW (multi project wafers) as vehicles. The main figures of merit are reported in the next slides.
- MPW have also been used by other customers who designed their own SPAD cells using the Lfoundry PDK. An example is shown in the next pages
- The collaboration with FBK is also reflected on other activities. Special mention deserves SUPERTWIN, funded by the European Union for the development of a new generation microscope. The SPAD image sensor was manufactured in Lfoundry using the 110 nm technology.

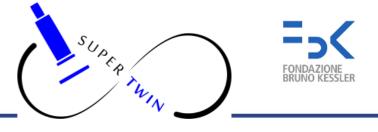
SPAD integrated into the LF PDK

Main characteristic of the SPAD cells implemented in the 110 nm LFoundry PDK Characterization data at 20°C. Main characteristic of the SPAD cells implemented in the 150 nm LFoundry PDK Characterization data at 20°C.

	Cell Type1	Cell Type2
size	22.2 μm - 27.2 μm	
BV	18.3 V	20.1 V
Median DCR@ 3V	0.15- 0.19 Hz/µm2	0.15- 0.21 Hz/μm2
	19.8-30.8%	16.2%-24.0%
PDE peak @3 V	450 nm	450 nm
PDE#850 nm @3 V	3.2%	3.0%
jitter@831 nm	57.9 - 65 ps	76-80 ps

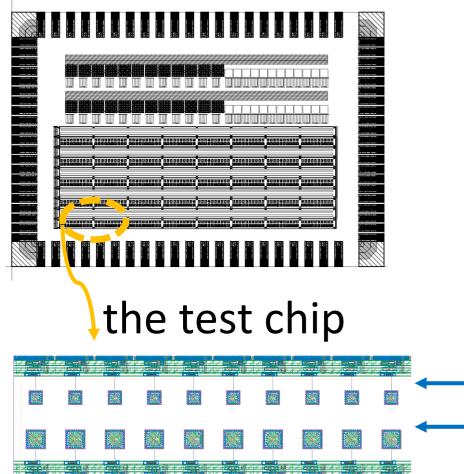
110 nm technology is optimized for CIS

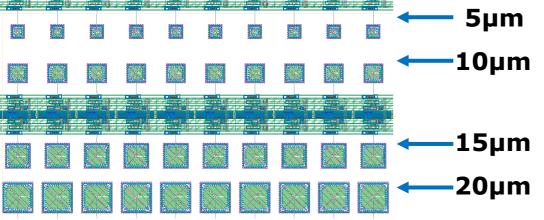
	Cell Type1	Cell Type2
size	15.6 μm2 - 22.5 μm	
BV	18.5 V	23.6 V
Median DCR@ 3V	12.5 Hz/µm2	8 Hz/µm2
DDE maak @2.V	10.8%-15.4%	14.9-16.7 %
PDE peak @3 V	450 nm	515 nm
PDE#850 nm @3 V	2.30%	2.30%
jitter@831 nm	42.0 ps	na

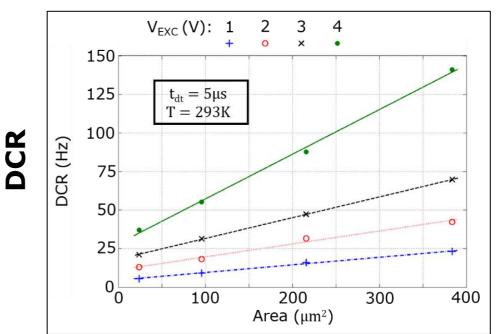

SPAD integrated into the LF process flow

Sensor	customer1	customer2
Active area (µm2)	78.5	92
DCR (cps/µm2) @ OV	0.76 @ 3 V	0.19 @ 3 V
PDP @wavelenght/OV	52%@460 nm/3 V	22%@455 nm/3 V
PDP @wavelenght/OV	66%@460 nm/6 V	36%@455 nm/6 V
time jitter (ps) @ conditions	87 @846 nm @ 4 V	NA

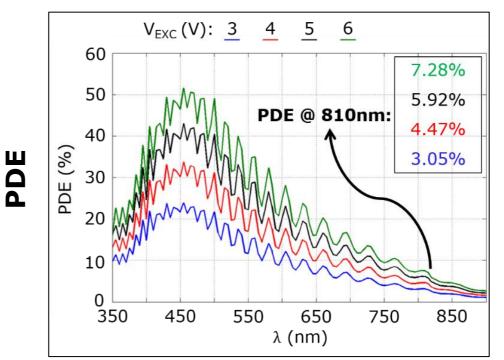
Main figure of merits **of SPAD cells designed by customers** using LFoundry 110 nm PDK. Few examples to **support the suitability of LF technology for producing SPAD devices**






14

Development of a new generation of optical microscopes to go beyond the Rayleigh limit based on entangled photons



- Organization of the test chip in 1x20 arrays.
- For each flavor, SPADs of 4 different sizes, characterized by their side length, L.

No big variation with SPAD area. <u>Low DCR level</u> even for the smallest cell

- LFoundry line is suitable for the production of both SIPMs and SPADs (line qualified, products running)
- SPADs are successfully integrated into the PDK, on both 150 nm and 110 nm technology nodes, with good results;
- SIPM performances at the status of the art, equivalent to FBK custom ones, have been achieved and may be produced in volume in different flavors.
- Further development is in place looking to improve SPAD and SIPM performances exploiting LFoundry process capability

THANK YOU

www.lfoundry.com

LFoundry S.r.l. All rights reserved.