LIDAR using SPADs in the visible and short-wave infrared
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Time-correlated single-photon counting (TCSPC)
Why short-wave infrared (SWIR) wavelengths for free-space imaging?

Imaging through obscurants using a single-photon avalanche diode (SPAD) scanner
and a SPAD detector array camera in fog

Complex (multiple surfaces per pixel) scenes at 300 metres

Underwater imaging at visible wavelengths
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Advantages of short-wave infrared (SWIR) wavelengths

SWIR wavelengths: approximately 1.4 pum — 3 um

e Qutside retinal hazard region (400 - 1400 nm)

nm

Able to use significantly higher power levels while still being
eye safe.

* Lower solar background than visible region

Improved signal-to-noise ratio in single-photon counting

* Increased atmospheric transmission

SWIR wavelengths around 1550 nm
suffer less attenuation than visible band wavelengths.

* Decreased scattering from small particles
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Scanning single-photon depth imaging system

 Modular system — testbed for new components.
* Transceiver (275 x 275 x 170 mm)
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Aongus McCarthy, Robert J. Collins, Nils Krichel, Veronica Fernandez and Andy Wallace and Gerald S. Buller “Long-range time-of-flight scanning
sensor based on high-speed time-correlated single-photon counting” Applied Optics, 48, pp. 6241-6251 (2009)
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A~ 1550nm

Average power only 10mW

Peltier cooled InGaAs/InP SPAD (260K) -
850ps jitter

Daylight conditions in Edinburgh
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Target identification behind camouflage

at 230 metres

Camouflage Net #1
(~1 meter in front of target)
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Target identification behind camouflage dst1] LERIOT
at 230 metres
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Target identification behind camouflage

at 230 metres
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“Long-range depth profiling of camouflaged targets using single-photon detection”
Optical Engineering 57(3), 031303 (2017)



Imaging through obscurants — indoor trials 5

Facility has 26 metre long chamber for
smoke or fog conditions.

Conditions vary as smoke/fog disperses
with time.
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Imaging through obscurants — scanning syste
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Obscurant dispersion over the course of a measurement set
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Imaging through obscurants — scanning syste (Gar. |dSEL
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Imaging through obscurants — SPAD array transceiver |dStL] awart

SPAD detector array
transceiver:

* 32 x 32 InGaAs/InP SPAD
array

e A =1550 nm

e ~20mW —-200mW average
power at 150kHz

* Flood-illumination of scene —
several metres diameter spot

e Bistatic transceiver
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Imaging through obscurants — timing histograms dstl| &wart
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Imaging through obscurants — timing histograms
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Imaging through obscurants - 50 metres range dstl] swart
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Imaging through obscurants - 150 metres range
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Rapid reconstruction of moving images through obscurants dstl! &wart
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Rapid reconstruction of moving images through obscurants

Pixel-wise (cross correlation) New M2R3D algorithm
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Cartoon of the scene

“Real-time single-photon 3D LiDAR imaging of moving targets through atmospheric obscurants”
Rachael Tobin, Abderrahim Halimi, Aongus McCarthy, Philip J. Soan and Gerald S. Buller (under review)



Real Time Reconstruction of Outdoor, Multi-Surface Moving Scenes dStl ERIOT
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« 50 grayscale frames per second
* Real-time processing
« Eye-safe illumination in presence of solar background
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Real Time Reconstruction of Outdoor, Multi-Surface Moving Scenes [ dStl ERIOT
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Frame: l -‘ "' : . .: - "o"', -l - Ba(kground
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* Multiple surface
« 50 grayscale frames per second
* Real-time processing
« Eye-safe illumination in presence of solar background
“Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers",

Julian Tachella, Yoann Altmann, Nicolas Mellado, Aongus McCarthy, Rachael Tobin, Gerald S. Buller, Jean-Yves Tourneret
Stephen MclLaughlin, Nature Communication 10, 4984 (2019)



Underwater imaging — selection of wavelength {&), QUANTIC
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1 attenuation length = distance after which the optical power is attenuated of 1/e of its initial value
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Underwater imaging — single-pixel transceiver __ {¢) QUANTIC SEWALT
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Target distance

) in water ~ 1.70m
Hluminfe

pulse
Photon return

— Electrical
— QOptical fiber

A. Maccarone, A. McCarthy, X. Ren, R.E. Warburton, A.M. Wallace, J. Moffat, Y. Petillot, and G. S. Buller, “Underwater depth
imaging using time-correlated single-photon counting,” OPTICS EXPRESS 23, 26, pp. 33911-33926 (2015). 29



Underwater imaging — timing histogram
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jitter ~ 60 ps
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Underwater imaging —8 attenuation lengths @.QUANTIC HERIOT
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e A=675-700 nm « 8 Attenuation lengths
* Average power ~ 2.6 mW e Acquisition time per pixel =30 ms
* Pixel format =240 x 240 * Pixel-wise cross-correlation approach
Depth profile Meters Intensity map Counts
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Underwater depth profile at 8 attenuation lengths () quanTIC




Average photon Average photon Average photon Average photon
per pixel =127.09 per pixel = 5.05 per pixel =2.79 per pixel = 0.86 '0.57

Averae photon | Average photon Average photon

per pixel =0.63 per pixel = 0.54 per pixel = 0.45 >



“QuantiCam” — 192 x 128 SPAD array

e 192 x 128 pixels
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* 34 psto 120 ps tunable resolution
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e 4096 bins
e 25 Hz Dark Count Rate
e 13% fill factor

* 7% photon detection
efficiency at A = 670nm
e Binary frame:

0 = no event recorded
1 = event recorded

R. K. Henderson, N. Johnston, F. Mattioli Della Rocca, H. Chen, D. Day-Uei Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. B?i’zch,
"A 192 x 128 Time Correlated SPAD Image Sensor in 40-nm CMOS Technology," IEEE J. Solid-St. Circ., 54(7), 1907-1916 (2019).
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“QuantiCam” — 192 x 128 SPAD array
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Depth profiles using SPAD array
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Cross-Correlation Counts

Average optical >0

power ~ 0.4 mW 45

40
1.2 Attenuation lengths
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Binary frame acquisition 30

time = 1ms o5

Binary frame acquisition 20

rate = 500 Hz
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Images obtained with 10
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Depth profiles using SPAD array

50 binary frames

. 20 binary frames 1 binary frame
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Depth profiles using SPAD array

Cross-Correlation Median filter + Polynomial ApprOX|mat|on

Counts
15

Average optical

power ~ 8 mW

Binary frame acquisition

time = 1ms

Binary frame acquisition
rate = 500 Hz

Images obtained with 6.7 AL

50 binary frames

0

Aurora Maccarone, Francesco Mattioli Della Rocca, Aongus McCarthy, Robert Henderson, and Gerald S. Buller, 0
"Three-dimensional imaging of stationary and moving targets in turbid underwater environments using a single-phoatson
detector array", Optics Express 27(20), pp. 28437-28456 (2019).



Rapid moving image using SPAD array
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Aurora Maccarone, Francesco Mattioli Della Rocca, Aongus McCarthy, Robert Henderson, and Gerald S. Buller,

"Three-dimensional imaging of stationary and moving targets in turbid underwater environments using a single-photon
detector array”, Optics Express 27(20), pp. 28437-28456 (2019).
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J. Tachella, Y. Altmann, N. Mellado, A. McCarthy, R. Tobin, G. S. Buller, J.-Y. Tourneret, and S. McLaughlin, “Real-time 3D
reconstruction from single-photon lidar data using plug-and-play point cloud denoisers,” Nat. Commun. 10(1), 4984 (2019)




Fully submersed transceiver using real-time . HERIOT
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processing of depth profiles
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Summary

* Time-correlated single-photon counting has been used successfully in several
challenging imaging scenarios involving through obscurants. This has developed to
“real-time” reconstruction of moving images.

* Longer wavelength SPADs ideal for long-distance free-space imaging through
obscurants. > 5 attenuation lengths demonstrated at 150 metres. Work ongoing...

* Si-based SPADs have been used successfully in underwater imaging - depth
imaging up to 9.2 attenuation lengths (one way) has been achieved. CMOS SPAD
arrays been demonstrated in moving underwater scenes.

* Field trials on underwater submersible transceivers ongoing.

* All papers available at group web-site www.single-photon.com



http://www.single-photon.com/

Depth imaging at 1.4 km
in the presence of high solar background

A =1550 nm
Average optical output power level ~ 200 mW
Depth (m)
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No obscurants used due
to on-the-day restrictions

However, neutral density filters used
in system transmission
channel to simulate reduced signal.

Several data acquisition times also

investigated.
e 1second

* 0.1 seconds
 0.01 seconds

Nb1 No ND filter

(~ 20 mW)

ND2
(~ 2 mW)

1 second 0.1 second 0.01 second
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