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Motivation for 3D Stacking

 Back side illuminated (BSI)

 Fill factor limited by SPAD only. 

 Process for SPAD wafer can be optimized for SPAD 
performance (e.g. depletion layer width).

 SPAD process can be re-used for different CMOS 
nodes – enabling optimized products in terms of 
performance and cost. 
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Test Structure and SPAD Schematic
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 SPAD is biased between VDD and VHV (negative). 

 Passive quenching used. 

 Current IQ used to set the dead time over a wide range 
(~10ns….~10μs).

 For crosstalk characterization, outputs for two neighboring 
SPADs are available. 

VSS

VDD VDD VDD

VHVIQ

output

SPAD Device Fill Factor[%] Loverhead [um]

1 25 3.15

2 32 2.75

3 36 2.55

4 40 2.35

5 44 2.15

6 48 1.95

7 52 1.75



Breakdown Voltage
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Main impact factors of breakdown voltage:

 Achievable fill factor limited by break down voltage. Required 
minimum “overhead” region scales approximately linearly with 
breakdown voltage. 

 Depletion layer width (impact on PDE, junction capacitance)

 DCR (for low BV, tunneling dominates DCR). 

 Energy per SPAD event scales with breakdown voltage.



Results for different fill factors

Breakdown Voltage (VBD)
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 VBD slightly decreases with fill factor (250mV).
 Standard deviation of within wafer distribution is ~150mV.
 VBD temperature coefficient is 45mV/°C, no impact of the fill factor. 

FF



25°C, Vexc=2.0V

Dark Count Rate
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 DCR (median) is 6cps for a fill factor of 25% and 16cps for a drawn fill 
factor of 52%.

 Around 80% of SPADs show a DCR close to median value. 

 When DCR is normalized to drawn active area, DCR (in cps/um²) still 
increases with fill factor. Indication that drawn active area ≠ real active 
area.



Vexc=2.0V

Dark Count Rate: Temperature Impact
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 Activation energy (extracted from 75°C and 100°C measurements) is 
1.08eV.

 For the device with the fill factor of 52%, the DCR becomes very 
high at 100°C, caused by the different temperature coefficient of the 
guard ring versus the avalanche junction. 



FF=0.48, Vexc=2.0V

DCR Distribution for 25/50/75/100°C
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 At 75°C, median DCR is 270cps and the most noisy SPAD has a DCR of 130kcps. This is still a reasonable DCR at 
75°C! 



FF=0.48

Activation Energy for Hot Pixels
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 DCR for 25°C, 50°C dominated by tunneling, for 75°C and 100°C by thermal diffusion.  

 Noisy SPADs dominated by diffusion for all temperatures (25°C-100°C). 

 Some SPADs are in the main population at 25°C, but end up as hot pixel at 100°C and vice versa. 

 Activation energy tends to be lower for SPADs with larger DCR. 
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940nm

Impact of Fill Factor on PDE and PDP
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 PDE = PDP * FF

 PDE increases non-linearly with fill factor.

 Hence PDP is not constant over fill factor. 

VexcVexc



Measurement Method

Crosstalk
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The cross talk between SPAD1 and SPAD2 is measured by 
counting the events for SPAD1, SPAD2 and both SPADs combined. 

Cross talk is calculated as: (C1+C2-C)/C 

Light emission of SPAD1 (when triggered 
by DCR or light) can trigger the 
neighboring SPAD2 (or vice versa) 
optical orthogonal cross-talk. 

C1: 3 counts

C2: 3 counts

C=(-C1)*C2: 5 counts

VDD

0V

-VDD²

0V²

VDD

0V

PW

PW

300ps



Impact of Fill Factor and Vexc on Crosstalk (1)
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Cross talk increases with fill factor and excess bias voltage.

Fill factor:

 Distance between SPAD active area becomes smaller for larger fill 
factors.

 Capacitance increases with fill factor, thus the charge per SPAD trigger 
event is increased (more light emission).

 PDE increases with fill factor. 

Excess bias voltage:

 PDE increases ~linearly with excess bias voltage. Thus probability of 
SPAD triggering is increased.

 The charge per SPAD trigger event increases with excess bias voltage 
(more light emission). 

Vexc

FF



Impact of Fill Factor and Vexc on Crosstalk (2)
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Results: 

 Excess bias voltage impact nearly eliminated (less then 10% variation 
over Vexc remains).  

 Normalization with Vexc
2: Remaining impact of the fill factor is much 

stronger, since increase of PDE with fill factor is not taken into account. 

 Normalization with Vexc∙PDE: Remaining impact of fill factor due to 
reduced spacing with fill factor and increased capacitance. 
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Crosstalk – PDE Trade-Off
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 Trade-off between PDE (@940nm) and cross-talk.

 Slightly worse trade off for larger excess bias voltage.

Vexc



25°C, Vexc=2.0V, 940nm

Timing Jitter @940nm
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 Good jitter characteristics at 940nm!
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FF FWHM FW@10% FW@1%

0.25 120 260 630

0.32 130 270 650

0.36 140 290 640

0.40 150 320 680

0.44 140 310 660

0.48 145 310 790

0.52 140 300 830



25°C, Vexc=3.0V

After Pulsing Probability
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 After pulsing probability is measured by the inter-avalanche time method.

 Measurement taken with 7ns dead time and low light condition.

 After pulsing probability < 0.5%



Typical parameters at 2V excess bias voltage, FF=0.48

Performance Table
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Key Performance Indicator Unit Stacked BSI 45/40nm

Pixel pitch um ~12.5

Breakdown voltage V 17.0

DCR (25°C) cps 14

DCR (75°C) cps 270

PDE at 940nm % 4.5

Timing jitter FWHM at 940nm ps 145

Timing jitter (FW10%M) at 940nm ps 310

Timing jitter (FW1%M) at 940nm ps 790

After pulsing probability at 7ns dead time % <0.5

Cross talk probability % 0.8



Benchmark
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