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Motivation for 3D Stacking ami
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» Back side illuminated (BSI) p-well 2

= Fill factor limited by SPAD only. Biwelll

» Process for SPAD wafer can be optimized for SPAD
performance (e.g. depletion layer width).

= SPAD process can be re-used for different CMOS L J
nodes — enabling optimized products in terms of

performance and cost. 45nm SPAD wafer
40nm CMOS wafer
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Test Structure and SPAD Schematic
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SPADs are available.



Breakdown Voltage

Main impact factors of breakdown voltage:

Achievabile fill factor limited by break down voltage. Required
minimum “overhead” region scales approximately linearly with
breakdown voltage.

Depletion layer width (impact on PDE, junction capacitance)
DCR (for low BV, tunneling dominates DCR).
Energy per SPAD event scales with breakdown voltage.
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Breakdown Voltage (VBD)

Results for different fill factors
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VBD slightly decreases with fill factor (250mV).
Standard deviation of within wafer distribution is ~150mV.
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VBD temperature coefficient is 45mV/°C, no impact of the fill factor.
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Dark Count Rate

25°C, Vexc=2.0V
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Dark Count Rate: Temperature Impact

Vexc=2.0V
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» Activation energy (extracted from 75°C and 100°C measurements) is
1.08eV.

» For the device with the fill factor of 52%, the DCR becomes very
high at 100°C, caused by the different temperature coefficient of the
guard ring versus the avalanche junction.
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DCR Distribution for 25/50/75/100°C ami:

FF=0.48, Vexc=2.0V Sensingifs
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= At 75°C, median DCR is 270cps and the most noisy SPAD has a DCR of 130kcps. This is still a reasonable DCR at
75°C!
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Activation Energy for Hot Pixels
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= DCR for 25°C, 50°C dominated by tunneling, for 75°C and 100°C by thermal diffusion.

= Noisy SPADs dominated by diffusion for all temperatures (25°C-100°C).

= Some SPADs are in the main population at 25°C, but end up as hot pixel at 100°C and vice versa.
= Activation energy tends to be lower for SPADs with larger DCR.
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Impact of Fill Factor on PDE and PDP

940nm
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Crosstalk

Measurement Method

Light emission of SPAD1 (when triggered
by DCR or light) can trigger the
neighboring SPAD2 (or vice versa) -
optical orthogonal cross-talk.
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The cross talk between SPAD1 and SPAD2 is measured by
counting the events for SPAD1, SPAD2 and both SPADs combined.

Cross talk is calculated as: (C1+C2-C)/C



Impact of Fill Factor and Vexc on Crosstalk (1) ami.
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Cross talk increases with fill factor and excess bias voltage. 25
20 A Vexc

Fill factor: % 15 / :;
= Distance between SPAD active area becomes smaller for larger fill e / - ——

factors. 8 /
= Capacitance increases with fill factor, thus the charge per SPAD trigger 05 &~ S: -

event is increased (more light emission). 0.0 - ;
= PDE increases with fill factor. g8 020 :';_4[01 050 060
Excess bias voltage: 25 _._g_ 55

= PDE increases ~linearly with excess bias voltage. Thus probability of
SPAD triggering is increased.

= The charge per SPAD trigger event increases with excess bias voltage
(more light emission).
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Impact of Fill Factor and Vexc on Crosstalk (2)
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Crosstalk — PDE Trade-Off ami
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» Trade-off between PDE (@940nm) and cross-talk.
= Slightly worse trade off for larger excess bias voltage.
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Timing Jitter @940nm ami

25°C, Vexc=2.0V, 940nm Sensing is life.
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After Pulsing Probability ami

25°C, Vexc=3.0V Sensing is life.
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» After pulsing probability is measured by the inter-avalanche time method.
» Measurement taken with 7ns dead time and low light condition.
= After pulsing probability < 0.5%



Performance Table

Typical parameters at 2V excess bias voltage, FF=0.48

Sensingis life.

Key Performance Indicator Unit Stacked BSI 45/40nm
Pixel pitch um ~12.5
Breakdown voltage V 17.0

DCR (25°C) cps 14

DCR (75°C) cps 270

PDE at 940nm % 4.5

Timing jitter FWHM at 940nm ps 145

Timing jitter (FW10%M) at 940nm ps 310

Timing jitter (FW1%M) at 940nm ps 790

After pulsing probability at 7ns dead time % <0.5

Cross talk probability % 0.8



Benchmark

Al FF=52%,TVexc=3V O« O This work
.70 o
o A @ [ ]
6.0 : [2]
£50 [4]
o FF=48%, Vexc=2V Q) ® [5]
5 40 o [6]
® 3.0 | 0 *[7]
w o ® n O A[8]
2 29 0[10]

1.0 o - " *[9]

0.0 ®[11]

1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03
DCR [cps/um?]

ami

Sensingis life.

[1] This work

[2] S. Lindner et al., “A High-PDE, Backside-llluminated
SPAD in 65/40-nm 3D IC CMOS Pixel With Cascoded
Passive Quenching and Active Recharge”, IEEE EDL vol.
38, no. 11, November 2017

[3] S. Pellegrini et al., “Industrialized SPAD in 40nm
Technology”, IEDM 2017

[4] S. Pellegrini et al., “Fully industrialized single photon
avalanche diodes”, SPIE proceedings vol. 10212, May
2017

[5] I. Takai et. al, “Single-Photon Avalanche Diode with
Enhanced NIR-Sensitivity for Automotive LIDAR Systems”,
Sensors 16, no. 4: 459

[6] D. Bronzi, “Low-noise and large-area CMOS SPADs
with timing response free from slow tails”, ESSDERC 2012
[7]1 A. Fenigstein, “CMOS 0.18um SPAD”, ISSW 2018

[8] A. Gulinatti et al., “Improving the performance of silicon
single-photon avalanche diodes”, SPIE proceedings vol.
803302, May 2011

[9] A. Gola, “NUV-HD and NIR-HD SiPMs and
Applications”, ISSW 2018

[10] M. Lee et al., “High-Performance Back-llluminated
Three-Dimensional Stacked Single-Photon Avalanche
Diode Implemented in 45-nm CMOS Technology”, IEEE
Journal of Selected Topics in Quantum Electronics, vol.
24, issue 6, Nov.-Dec. 2018

[11] M. Morimoto et al., “High fill-factor miniaturized SPAD
arrays with a guard-ring-sharing technique”, Optics
Express, vol. 28, issue 9, 2020

Confidential © ams AG
Page 19



am:

Sensingis life.

Thank you!

Please visit our website
www.ams.com




