Custom Focal Plane Arrays of SPADs

Erik K. Duerr¹, Anup Katake², Jason Mumolo²

The International SPAD Sensor Workshop 2020

9 June 2020

¹ Lincoln Laboratory, Massachusetts Institute of Technology
² Jet Propulsion Laboratory, California Institute of Technology

Geiger-Mode Avalanche Photodiode (GmAPD) Detector Technology

Geiger-mode APDs provide:

- Single-photon sensitivity
- Lots of current \rightarrow easy digitization
- Fast breakdown \rightarrow excellent (sub-ns) time resolution
- TEC accessible temperatures \rightarrow low SWAP
- Large format arrays

AOSTB Ladar Hurricane Harvey Response

Unprecedented Harvey Damage

203,000 homes damaged

- 500,000 vehicles destroyed
- 200 million cubic yards of debris
- 30,000 people displaced
- 13 Superfund sites flooded

Urgent FEMA Requests

- 1. Wide-area debris mapping and quantification
- 2. Infrastructure damage assessment
- 3. Flood extent and volume

AOSTB Ladar responds to FEMA needs

Advanced Ladar sensor potentially game-changing to recovery and public assistance efforts

- InP/InGaAsP APD array bump bonded to ROIC with indium bumps
 - Probe-card testing and underfill after bump bonding APD to ROIC
- ROIC precision placed and epoxied on AIN interposer
- GaP microlens array actively aligned to APDs and attached with epoxy
 - ~0.5 um accuracy
- Temperature sensor epoxied on interposer
 - Monitors SCA temperature

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Presentation Name - 4 Author Initials MM/DD/YY

Jet Propulsion Laboratory California Institute of Technology

- Median dark count rate ~3 kHz at room temperature (25 C)
 - DCR varies in expected manner with temperature
- PDE achieves > 30% PDE at >4 V overbias
 - Readout integrated circuit can achieve overbias values up to ~6 V

Aging Data 10⁸ Count Rate (Hz) 10⁷ 10⁶ 21 22 23 23 25 26 27 27 28 29 30 31 × 32 × 33 34 35 10⁵ Dark 10⁴ 10 20 40 50 30

Hours

LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

- Failure mechanisms of Geiger-mode APDs ٠
 - DCR increase primary "wear-out" mechanism for GmAPDs
 - Time to failure function of total amount of charge through APD and temperature
 - Dark current increase
 - Accompanies DCR increase during wear-out of APD
 - **Electrical shorting**
 - APDs that failed in this mode typically exhibited anomalous behavior in initial testing and can be screened for during assembly and burn-in
 - These failure mechanisms apply statistically to individual detector elements
- Accelerated aging of APD arrays on fanout enables calculation of failure ٠ rates
 - Increase charge flow through APDs to cause measurable failure rate
 - Scale to charge environment on ROIC to predict final FIT (failure in time) rates for detector pixels

$$FailRate(I, T) \propto I \times \exp\left[\frac{-E_A}{kT}\right]$$

- Failure rate scaled for charge flow difference between fanout and ROIC (charge acceleration factors >100x)
- Failure rate measured as a function of temperature

- Failure rates for qualification lot (Blue stars) and flight lots (Green/Yellow stars) in agreement with past standard (good) fab lots
- Scaling to nominal operating temperatures (-10 to +10C) yields <200 FITs over this range of temperatures
 - MTBF >> mission time
 - 1kFITs: ~8000 years at 2hr/week ops
 - 200 FITs: ~40k years for this op-tempo

- Radiation Effects:
 - *lonizing* at the surface as charge is embedded in passivation layer
 - Non-ionizing ("NIEL") in the bulk, where displaced atoms generate electronic trap centers, leading to an increase in the dark count rate (DCR)
- Primary concern for *Geiger-mode* APDs is the increase in DCR due to displacement damage

UNCLASSIFIED

Quantification of FPA Radiation Damage (DDD*)

*DDD = Displacement Damage Dose, **DCR = Dark Count Rate, ***CDF = Cumulative Distribution Function

Presentation Name - 9 Author Initials MM/DD/YY

• Results are representative (i.e. not the same FPA for all 3 measurements)

*DDD = Displacement Damage Dose

Presentation Name - 11 Author Initials MM/DD/YY

- Mean dark count rate shown as a function of temperature pre- and post-radiation
- Lower temperatures show overall benefit to reduction in dark count rate
- Analysis continues to identify cause of change in the slope for measured DCR

Jet Propulsion Laboratory California Institute of Technology

- DCR decreases by ~30% over 5 day period
- Scaling for temperature on Day 5: ~32kHz DCR @ -10C, ~41kHz DCR @ 0C

DDD-Induced Median DCR with Anneals (Si) Jet Propulsion Laboratory California Institute of Technology

- Annealing at elevated temperatures shows more than one activation energy
 - e^(-0.031t) to e^(-0.037t), where t is days
- Elevated temperature anneals result in permanent decrease in DCR
 - 1-hour anneal at 100C ~ same as 290 hours at 23C

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Presentation Name - 16 Author Initials MM/DD/YY

*Results shown from testing with low flux prior to total DDD testing

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

- Microlenses improve coupling of incident photons into active area
- Small diameter active area GmAPDs reduce sensitivity to displacement damage
 - Angle of acceptance determined by microlens design and APD diameter
 - MLAs are refractive GaP designs

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Presentation Name - 17 Author Initials MM/DD/YY

Device in Test Chamber

Example Weibull Results

Upset Rate Estimates (Per Day)

Eı	nvironment	Frequency	Fire Map	Timestamp	FSM	Counter
	Nominal	$500\mathrm{MHz}$	2.030×10^{-4}	1.393×10^{-4}	3.119×10^{-5}	3.165×10^{-4}
	Nominal	$250\mathrm{MHz}$	4.801×10^{-4}	$1.471 imes 10^{-3}$	8.002×10^{-5}	9.482×10^{-5}
5-min. V	Worst Case	$500\mathrm{MHz}$	1.968	1.522	2.814×10^{-1}	2.405
5-min.	Worst Case	$250\mathrm{MHz}$	3.788	$3.830 imes 10^2$	3.921	1.031

- Heavy ion testing of ROICs to simulate SEE from space GCR/heavy ion environment
- Upset rates due to SEEs in ROIC determined to be low
 - Very low probability of upsets, even in worst case 5 minutes

- MIT Lincoln Laboratory has partnered with the Jet Propulsion Laboratory to explore space-qualification GmAPD-based imagers
- In a space environment, the radiation effects primarily impacting GmAPD-based cameras are:
 - Displacement damage resulting in increased per-pixel DCR as a function of environment and lifetime
 - Single event effects impacting the custom readout integrated circuit (ROIC)
- A trade space of semiconductor, APD size, and temperature determine end-of-life performance and can be used to optimize performance for different requirements