Small and Smart SPAD Pixels

Edoardo Charbon

EPF

June 10, 2020

Large-Format SPAD Cameras – Why?

- SPADs are fast and have high timing resolution ideal for 3D/LiDAR
- SPADs are natively digital inherently simpler processing
- Emerging applications requiring both larger formats are needed

Example: Fluorescence Image Taken in Milliseconds

HeLa cells labeled with DAPI, Alexa 488, and Alexa 555 Taken with SwissSPAD2

This has been made possible by large-format cameras!

4

3 Key Challenges of a Large-format SPAD Camera

5

- 1. Pixel pitch
- 2. Power
- 3. Data

Challenge 1: Pixel pitch

Why is SPAD Pixel Pitch so Far Behind?

Reasons for Delayed SPAD Miniaturization

- High voltage requirements only older nodes support them
- Guard rings
- Backside illumination and 3D-stacking came later to SPADs
- For many years, SPADs were considered of no economic interest!

Mostly Guard Rings

- The guard ring is implicitly obtained from lightly-doped deep n-well (on the surface)
- Suitable for deep-submicron processes (in this case 130nm)
- Compatible with triple-well process
- Good DCR performance

Compact Alternative: the p-i-n SPAD Structure

Guard rings reduce E-field at the edges to suppress premature edge breakdown

Vertical Flow APDs (VAPD)

Charge-focusing SPAD

Y. Hirose et al., ISSCC 2019

K. Morimoto, ISSW 2020

Densifying Pixels: Deep Trench Isolation

Achieving Very Low Pitch

- Share n-wells and deep n-wells
- Share guard rings
- Share electronics
- 3D-stacking
- Microlenses

Achieving Very Low Pitch (1)

- Share n-wells and deep n-wells
- Share guard rings
- Share electronics
- 3D-stacking
- Microlenses

	p-well	STI n-well		p-well	± n-well	
deep n-well						
		p-epi	p-epi deep n-we	p-epi deep n-well	p-epi p-epi p-epi	p-epi p-epi deep n-well

Achieving Very Low Pitch (2)

- Share n-wells and deep n-wells
- Share guard rings
- Share electronics
- 3D-stacking
- Microlenses

Achieving Very Low Pitch (1-2)

16

Achieving Very Low Pitch (3)

- Share n-wells and deep n-wells
- Share guard rings
- Share electronics
- 3-Stacking
- Microlenses

Achieving Very Low Pitch (4)

- Share n-wells and deep n-wells
- Share guard rings
- Share electronics
- <u>3D-Stacking</u>
- Microlenses

Achieving Very Low Pitch (5)

- Share n-wells and deep n-wells
- Share guard rings
- Share electronics
- 3D-stacking
- Microlenses
 - Electrical µlens. e.g. C. Veerappan, IISW'13
 - Optical µlens

Smaller pixels with lower fill factor become attractive because of low DCR

19

© Edoardo Charbon 2020

Pixel pitch:
$$L_p = D_a + L_{a-a}$$

Assumptions:

- Uniform square grid
- Circular active area & GR
- Pixel circuit not included
- Scaling parameter: L_p
- L_{a-a} not scaled with L_p

Kazuhiro Morimoto, *PhD Thesis* Lausanne, June 2020

Da La-a

Scaling Law

Characteristics	Equation	Pixel pitch: $L_p = D_a + L_{a-a}$
Fill factor (%)	$\frac{(\boldsymbol{L_p}-\boldsymbol{L_{a-a}})^2}{\boldsymbol{L_p^2}}$	
PDP (%)	$(rac{L_{p}-L_{a-a}-2r_{in}}{L_{p}-L_{a-a}})^2$	
PDE (%)	$\frac{(\boldsymbol{L}_p - \boldsymbol{L}_{a-a} - 2\boldsymbol{r}_{in})^2}{\boldsymbol{L}_p^2}$	
DCR (cps)	$(\boldsymbol{L_p} - \boldsymbol{L_{a-a}} - 2r_{in})^2$	
DCR density (cps/ μ m ²)	$\frac{(\bm{L_p} - L_{a-a} - 2r_{in})^2}{(\bm{L_p} - L_{a-a})^2}$	
Afterpulsing probability (%)	$\left[\frac{\pi\epsilon(\boldsymbol{L}_p-\boldsymbol{L}_{a-a})^2}{4W_{eff}}+C_0\right],$	
Crosstalk probability (%)	$\left[\frac{\pi\epsilon(L_p-L_{a-a})^2}{4W_{eff}}+C_0\right]\times\frac{e^{-aL_p}}{L_p^2}\times\frac{(L_p-L_{a-a}-2r_{in})^2}{L_p^2}$	
Power consumption (pJ)	$\left[\frac{\pi\epsilon(L_p-L_{a-a})^2}{4W_{eff}}+C_0\right]$	Kazuhiro Morimoto, <i>PhD Thesis</i> Lausanne, June 2020

Pixel Scaling

Pixel pitch: $L_p = D_a + L_{a-a}$

© Edoardo Charbon 2020

© Edoardo Charbon 2020

23

24

Afterpulsing probability \leq 0.21%, timing jitter \leq 88 ps

Challenge 2: Power

© Edoardo Charbon 2020

Fast Quenching, Recharge, and Gating

Pixel Readout Sharing (Pixel B)

29

No Readout Sharing (Pixel A)

Achieving Low Power

K. Morimoto et al., ArXiv preprint arXiv:1912.12910 K. Morimoto et al., *Optica* 2020

© Edoardo Charbon 2020

Challenge 3: Data

Achieving High Data Readout: Smart Pixels

- Fast data transfer from pixel to bottom of the chip via low-C wires and appropriate buffers
- Memory-style readout via sense-amplifiers
- Pipelining
- LVDS output
- Processing
 - on chip
 - on column
 - on pixel

The MegaX Architecture

MegaX's High-Speed Read-out

- 1024 x 1000 pixels
- 9.4µm pitch
- 3.8ns gating
- 24,000 fps
- 24.5Gb/s
- VDD: 1.8V
- VBD: 24.7V

K. Morimoto et al., Optica 2020

MegaX – Fabricated Chip (180nm CIS Technology)

MegaX: Overall Performance

Process technology	180nm CMOS			
Chip size (mm ²)	11×11			
Sensor resolution	1024×1000			
Pixel size (μm)	9.4			
Fill factor (%)	7.0/13.4			
Pixel output bit depth (b)	1			
Number of pixel transistors	7/5.75			
Median DCR (cps)	0.4/2.0 (V _{ex} =3.3V)			
Maximum PDP (%)	10.5/26.7 (V _{ex} =3.3V)			
Crosstalk (%)	0.17/0.39 (V _{ex} =3.3V)			
Minimum gate length (ns)	3.8			
Frame rate (fps)	24,000 (1b)			
Power dissipation (W)	0.284/0.535			

© Edoardo Charbon 2020

© Edoardo Charbon 2020

MegaX: Pixel Resolution

MegaX: Intensity Vision

K. Morimoto et al., Optica 2020

MegaX: LiDAR Vision

MegaX: LiDAR Vision

© Edoardo Charbon 2020

MegaX: Multiple Surfaces

43

Gating window profile: f(t) Photon distribution: g(t) Detected intensity: h(t)

MegaX: Multiple Surfaces

Outlook

Moore's Law for SPADs

Smart Pixel (Networks)

- Peak detection and smart histogramming to reduce data transfer
- On-pixel or on-chip algorithms for e.g. lifetime extraction
- Neural networks on SPADs

N. Finlayson et al., ISSW 2020

MegaX: Extracting Fluorescence Lifetime with ANNs

49

V. Zickus et al., bioRxiv preprint Doi: https://doi.org/10.1101/2020.06.07.138685K.

© Edoardo Charbon 2020

3D-Stacking: BSI/FSI

- Better fill factor (potentially)
- Better space utilization
- Better cooling (with measures)

SPAD BSI vs. FSI

C. Veerappan & E. Charbon, TED(63) 2016

1µm-Pixels

	Abbas, IEDM'16	Henderson, IEDM'10	Abbas, IISW'17	Morimoto & Charbon OPEX'20		
Process technology	65/40nm 3D-BSI CMOS	90nm CMOS	130nm CIS	180nm CMOS		
Pixel pitch (µm)	7.83	5	3	2.2	3	4
Active diameter (μm)	-	2	1	1.2	2	3
Drawn fill factor (%)	45	12.5	14**	19.5*	32.3*	42.4*
Sensor resolution	128×120	3×3	4×4	4×4	4×4	4×4
Breakdown voltage (V)	12	10.3	15.8	32.35	23.6	22.1
Max. PDP (%)	27.5 (V _{ex} =3V)	36 (V _{ex} =0.6V)	15 (V _{ex} =3.2V)	10.3 (V _{ex} =4V)	17.3 (V _{ex} =6V)	33.5 (V _{ex} =6V)
Max. PDE (%)	12.4 (V _{ex} =3V)	4.5 (V _{ex} =0.6V)	2.1 (V _{ex} =3.2V)	2.0 (V _{ex} =4V)	5.6 (V _{ex} =6V)	14.2 (V _{ex} =6V)
Median DCR (cps)	11,000 (V _{ex} =3V)	250 (V _{ex} =0.6V)	150 (V _{ex} =1V)	751 (V _{ex} =4V)	1.6 (V _{ex} =6V)	2.5 (V _{ex} =6V)
Crosstalk (%)	-	<0.1 (V _{ex} =0.6V)	0.13-0.22 (V _{ex} =1V)	2.97 (V _{ex} =4V)	2.75 (V _{ex} =6V)	3.57 (V _{ex} =6V)
Afterpulsing probability (%)	-	-	0.18 (V _{ex} =1V)	<0.20 (V _{ex} =4V)	0.20 (V _{ex} =6V)	0.21 (V _{ex} =6V)
Timing jitter (ps)	136 (V _{ex} =3V)	107 (V _{ex} =0.6V)	107 (V _{ex} =3V)	72 (V _{ex} =4V)	70 (V _{ex} =6V)	88 (V _{ex} =6V)

The Race is On!

Take-home messages

- Large-format image sensors based on SPADs are an interesting trend with many interesting applications
- 3D-stacking could multiply the impact of these detectors with parallelism and machine learning in the forefront
- Work will focus on power reduction and miniaturization
- From ISSW 2020 (paraphrasing)
 - Histograms, histograms, histograms, Sara Pellegrini
 - Always start from the system, David Stoppa
 - Manage data before going big, Richard Walker
 - The 4 misconceptions about FLASH LiDAR, Hod Finkelstein
 - If you can, go digital, Daniel Van Blerkom

Acknowledgements

aqualab http://aqua.epfl.ch Kazuhiro Morimoto, EPFL/Canon (not in the picture) Minglo Wu, Andrei Ardelean, Arin Ulku, Claudio Bruschini, EPFL Harald Homulle, I. Michel Antolovic, PIIT

Canon, Swiss National Science Foundation for funding

