

Douglas J. Paul¹, J. Kirdoda¹, L. Ferre Llin¹, K. Kuzmenko², P. Vines², F.E. Thorburn², L.L. Huddleston², Z. Greener², D.C.S. Dumas¹, R.W. Miller¹, M.M. Mirza¹, A. Halimi², R.J. Collins², A. Maccarone², A. McCarthy² & Gerald S. Buller²

¹James Watt School of Engineering, University of Glasgow, U.K ²Institute of Photonics and QT, Heriot-Watt University, U.K.

http://userweb.eng.gla.ac.uk/douglas.paul/

Ge on Si SPADs for LiDAR & Quantum Technology Applications

Engineering and Physical Sciences Research Council QUANTUM COMMUNICATIONS HUB

Erosion measurement

University of Glasgow

Automotive & autonomous vehicle lidar

Security rangefinding Depth (m)

Erosion measurement

University of Glasgow

Single Photon Detector Applications (•) QUAN

Automotive & autonomous vehicle lidar

80

Padgett & Boyd, Phil. Trans. Roy. Soc. A 375, 20160233 (2017)

Quantum key distribution

Andrew Shields, Phys. World (2007)

Photonic quantum simulation / computing

J.W. Singleton et al. Nature Comms. 6, 7948 (2015)

https://youngcardriver.com/driving/driving-in-heavy-rain/

UK motorway or A-class road requirement: Level 4 autonomy requires identification of objects in 10 ms at 300 m

Military rangefinders & lidar \$803.4M by 2023 with 6.29% CAGR (Reuters 2018)

UK market for autonomous vehicle lidar, radar & GPS of £2.7Bn (£63Bn globally) by 2035 (UK Dept. Transport 2016)

https://youngcardriver.com/driving/driving-in-heavy-rain/

UK motorway or A-class road requirement: Level 4 autonomy requires identification of objects in 10 ms at 300 m

WAVELENGTH (MICRONS)

WAVELENGTH (MICRONS)

RGB photograph

Cross-Correlated Depth profiles

1550 nm 3D images at 24 m through smoke

Imaging Through Obscurants () QUANTIC

Real Time Reconstruction of Multi-Surface Moving Scenes using Single-Photon Detection at 330 Meters Range

- 50 grayscale frames per second of 32 x 32 pixels at 1550 nm
- Real-time processing
- Eye-safe illumination in presence of solar background

J. Tachella, et al. "Real-time 3D reconstruction of complex scenes using single-photon lidar: when image processing meets computer graphics" Nature Comms. 10, 4984 (2019)

Multiple surfaces resolved – more than one surface per pixel, on average

Real Time Reconstruction of Multi-Surface Moving Scenes using Single-Photon Detection at 330 Meters Range

- 50 grayscale frames per second of 32 x 32 pixels at 1550 nm
- Real-time processing
- Eye-safe illumination in presence of solar background

J. Tachella, et al. "Real-time 3D reconstruction of complex scenes using single-photon lidar: when image processing meets computer graphics" Nature Comms. 10, 4984 (2019)

Multiple surfaces resolved – more than one surface per pixel, on average

Princeton Lightwave (now Argo AI): significant funding over decades & commercial leader in InGaAs SPADs on InP

= x16 smaller than Ge on Si

J. Zhang et al., Light Sci. App. 4, e286 (2015)

Si has the best impact ionisation coefficients for any material

Epitaxial & Device Process

P. Vines et al., Nature Comms. 10, 1086 (2019)

Silvaco Athena TCAD

R.E. Warburton et al., IEEE Trans. Elec. Dev. 60, 3807 (2013)

Electric Field Profiles

Silvaco Athena TCAD

R.E. Warburton et al., IEEE Trans. Elec. Dev. 60, 3807 (2013)

Electric Field Profiles

GB Patent application no. 1814688.6 (10th September 2018)

P. Vines et al., Nature Comms. 10, 1086 (2019)

Ge SPADs Planar vs Mesa

100 µm diameter Ge on Si SPAD

P. Vines et al., Nature Comms. 10, 1086 (2019)

Geiger Mode Measurements (•) QUANTIC

- 50 ns detector gate at 1 kHz rep. rate
- **Picoquant ps pulsed 1310 nm laser**
- **NKT ps supercontinuum laser**
- Photon flux <0.1 photons / pulse
 - **19.5 ps timing bin for** jitter measurements

Geiger Mode Measurements () QUAN

- \bigcirc 50 ns detector gate at 1 kHz rep.
- **Picoquant ps pulsed 1310 nm laser**
- **NKT ps supercontinuum laser**
- Photon flux <0.1 photons / pulse
 - **19.5 ps timing bin for** jitter measurements

	Γ		C
r	at	םי	

50

1310 nm Performance

P. Vines et al., Nature Comms. 10, 1086 (2019)

1310 nm Performance

P. Vines et al., Nature Comms. 10, 1086 (2019)

Excess bias (%)

P. Vines et al., Nature Comms. 10, 1086 (2019)

F.E. Thorburn et al. Proc. SPIE 11386, 113860N (2020)

Excess bias (%)

P. Vines et al., Nature Comms. 10, 1086 (2019)

F.E. Thorburn et al. Proc. SPIE 11386, 113860N (2020)

26 µm InGaAs NEP = 1 x 10⁻¹⁷ W/ \sqrt{Hz} at 223 K and 1550 nm

Performance @ 1310 nm

26 µm InGaAs NEP = 1 x 10⁻¹⁷ W/ \sqrt{Hz} at 223 K and 1550 nm

Performance @ 1310 nm

$$NEP = \frac{h\nu}{SPDE} \sqrt{2DCR}$$

134 ± 10 ps jitter for 26 µm diameter SPAD @ 100 K

19.5 ps timing bin for jitter measurements

Temperature Dependence

D.C.S. Dumas et al., Proc. SPIE 10914, 1091424-1 (2019)

ra	n

Afterpulsing caused by traps in avalanche region: limit repetition rate due to dead time of detector

P. Vines et al., Nature Comms. 10, 1086 (2019)

P. Vines et al., Nature Comms. 10, 1086 (2019)

- 912 pW laser after attenuation
- λ = 1450 nm 0
- **Repetition rate 104 kHz**
- 100 µm diameter SPAD at 100 K \circ
- $V_{ex} = 1.5\%$, SPDE = 10% 0
- DCR = 4.7 MHz
- 23 mm aperture 0
- Mechanical raster of single pixel 0
- **100 x 70 pixel raster for images** \circ

95mm x 60mm x 45mm (L x W x H)

- 912 pW laser 0
- λ = 1450 nm 0
- **Repetition rate 104 kHz**
- $V_{ex} = 1.5\%$, SPDE = 10% 0
- \bigcirc DCR = 4.7 MHz
- 23 mm aperture 0
- 100 x 70 pixel raster

30 ms

LIDAR with Ge on Si SPADs () QUANTIC

Intensity

0

Cross-correlation

Depth

10 ms acquisition time with 50% of pixels removed

Noisy LIDAR Reconstruction (•) QUANTIC

RDI-TV

Estimate of photon events recorded in timing bin corresponding to peak of photo return histogram:

$$n_{p} = \frac{E_{pulse}F\lambda}{hc} t \frac{A_{lens}\rho}{2\pi R^{2}} e^{-2\alpha R} C_{in} C_{det}\eta$$

 \bigcirc

Background counts per bin:

$$\mathbf{n}_{\mathbf{b}} = \mathbf{t} \mathbf{D} \mathbf{C} \mathbf{R} \tau_{\mathbf{b}} \mathbf{F}$$

$$SNR = \frac{n_p}{\sqrt{n_p + n_b}}$$

Average laser power required for successful imaging at distance R:

$$\mathbf{P}_{\text{out}} = \frac{\mathbf{hc}}{\lambda} \frac{2\pi \mathbf{R}^2 \mathbf{n}_p}{\mathbf{A}_{\text{lens}} \rho \mathbf{t} \eta \mathbf{C}_{\text{in}} \mathbf{C}_{\text{det}}}$$

26 µm SPAD DCR = 2.6kc/s **E**_{pulse} = laser pulse energy

- F = laser rep. rate
- λ = wavelength
- t = acquisition time
- A_{lens} = collection area of lens
- ρ = reflectivity of target (= 10%)
- **R** = distance to target
- α = attenuation coefficient of environment
- C_{in} = internal loss of system (= 10 dB)
- C_{det} = temporal response of detector
- **η = detector SPDE (= 15% or 9%)**
- $\tau_{\rm b}$ = bin size (= 50 ns)
 - K. Kuzmenko et al., Opt. Exp. 28, 1330 (2020)

- \bigcirc

 \bigcirc

23 mm aperture lens with 26 µm Ge-on-Si SPAD operating at 125 K, 2.5% excess bias & 100 kHz rep. rate

SNR = 1.4, internal system loss = 10 dB, reflectivity of target is Lambertian with 10% back-scatter

 \geq 1 km range for LIDAR for eye-safe laser powers (IEC-60825-1) for \geq 1 ms averaging per pixel

3

300 m Ihrough Obscurants

 \bigcirc

- Planar design key resulting in 3 orders of magnitude reduction of DCR
- SPDE up to 38% at 1310 nm & 125 K
- NEP = 7.8 x 10⁻¹⁷ W/ \sqrt{Hz} and 134 ± 10 ps jitter for 26 µm SPAD at 100 K
- Afterpulsing at least x5 lower than InGaAs under identical conditions
- Initial LIDAR demonstration at eye-safe wavelengths
- Aim for telecoms wavelengths on Si at Peltier cooler temperatures \bigcirc
 - P. Vines et al., "High performance Ge-on-Si SPAD detectors" Nature Comms. 10, 1086 (2019)

K. Kuzmenko et al., "3D LIDAR imaging using Ge-on-Si SPAD detectors" Opt. Exp. 28, 1330 (2020)

Innovate UK

Further details: http://userweb.eng.gla.ac.uk/douglas.paul/index.html Douglas.Paul@glasgow.ac.uk

Engineering and Physical Sciences Research Council

PROGRAMME

EPSRC

ECHNOLOGIES

Summary

- **EPSRC** QuantiC
- **EPSRC Quantum Comms Hub**
- **EPSRC SPEXS Programme Grant**
 - InnovateUK AquaSec
- InnovateUK SPIDAR
- **Dstl PhD scholarship**

