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Basic TDC operation
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1. START pulse initiates laser pulse & TDC counter
2. Returning photon causes SPAD to avalanche
3. SPAD pulse output stops and latches TDC counter
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Histogram of photon arrivals

Histogram of SPAD trigger events
T T
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Multiple pulses are sent, and a histogram of arrivals is
created; the peak return indicates distance to object.
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TDC & Histogram Acquisition Architecture Example

* Designed for a scanning LiDAR system.

» Detects SPAD events over multiple capture cycles and builds up a histogram in memory.

+  Two memory banks allow for simultaneous histogram capture and readout for analysis by DSP block.
« TDC timing resolution is determined by the TDC clock rate.

+ Typical LiDAR would have an array of these blocks, one for each vertical pixel.

\ RANGESEL
EVENT

DISTRIB.

CONCUR. | 1gg | A

DETECTION T0C
i RIO
1 DATA
2l 7 Rro HISTOGRAM
T : " B 5 ¢ T0C@k+3) L DATA*CTRL ACQUISITION
6x4 SPAD 6x4 FRONT-END SuM oo k-
BLOCK BLOCK L |
prYreTTTS veeL  DATAZCTRL
SRAM = MSEL | STATE
R BANK A 0 A—ACQ.
i B—>DSP
Niclass et. al., JSSC, Jan. 2014 ;‘5. o ||| 0000 e T
SRAM = 1 |85aca
BANKB ML DATA+CTRL

$= = TOF1[10:0]+RELY1[9

HISTOGRAM =TOF2{10'0{~RELY2{9‘%
DSP = TOF3(10:0]-RELY3[20]
= INT[120]

FoO I?!ZA AMETEK'




TDC & Histogram Acquisition Architecture Example

* Designed for a scanning LiDAR system.

» Detects SPAD events over multiple capture cycles and builds up a histogram in memory.

+  Two memory banks allow for simultaneous histogram capture and readout for analysis by DSP block.
« TDC timing resolution is determined by the TDC clock rate.
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TDC & Histogram Acquisition Architecture Example

* Designed for a scanning LiDAR system.

» Detects SPAD events over multiple capture cycles and builds up a histogram in memory.

+  Two memory banks allow for simultaneous histogram capture and readout for analysis by DSP block.
« TDC timing resolution is determined by the TDC clock rate.

+ Typical LiDAR would have an array of these blocks, one for each vertical pixel.
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* Designed for a scanning LiDAR system.

» Detects SPAD events over multiple capture cycles and builds up a histogram in memory.

+  Two memory banks allow for simultaneous histogram capture and readout for analysis by DSP block.
« TDC timing resolution is determined by the TDC clock rate.
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TDC & Histogram Acquisition Architecture Example

* Designed for a scanning LiDAR system.
» Detects SPAD events over multiple capture cycles and builds up a histogram in memory.

+  Two memory banks allow for simultaneous histogram capture and readout for analysis by DSP block.
« TDC timing resolution is determined by the TDC clock rate.
+ Typical LiDAR would have an array of these blocks, one for each vertical pixel.
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Study Goals

* Investigate implementation of TDC / Histogram Acquisition architecture in a
40nm SPAD process using digital flow

« Advantages
= Timing closure inside digital tool
» Area efficiency
= Ease of revision
» Disadvantages
= Speed / resolution limited compared to analog techniques
» Timing variations & supply dependence
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Study Goals (continued)

Compare implementation of 500 MHz and 1 GHz design
= Speed, power and area of design

= Clocking & routing bottlenecks

= Clock stability

« How does the design scale with faster TDC clock speeds?
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Block Diagram

SPAD Block
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Implemented in digital place & route tool
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SPAD event summation (SST)

Synchronous Summation Technique (SST)
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Patanwala et. al., IISW 2019

The first operation on the incoming SPAD pulses is to latch them on the TDC clock.

After latching, we sum the number of pulses that occurred in that clock cycle.

The stability of the clock on the input latches is critical to the TDC timing accuracy.
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TDC Clock Tree

The timing on the clock tree to the
first set of latches is critical — any

shifts of this clock will cause SPAD <
pulses to change histogram bins, =
leading to TOF errors. T
Supply variations modulate the seaD |
delay of the clock tree - modelling

the supply distribution is important. e |
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TDC Clock Tree

The timing on the clock tree to the
first set of latches is critical — any

shifts of this clock will cause SPAD o] e »
pulses to change histogram bins, I S
leading to TOF errors. T ;_D—Q =
: 1— Z log,N
Supply variations modulate the oy ey
delay of the clock tree - modelling e
the supply distribution is important. EiepSE

CLK
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Pipelined SRAM operation to meet throughput requirement
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« Histogram acquisition requires a read, summation, and write to each memory location.
« The SRAM IP is typically not fast enough to meet the TDC clock timing requirements.
« For 500 MHz operation, we need to pipeline two SRAMs to meet the read/write timing.
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Complete Layout — 500 MHz TDC

Histogram Processing
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« Complete design includes SPI register controls and testability (Scan and MBIST).

« Approximately 50% utilization of standard cell area.
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Supply voltage drop

VDD (VSS similar)

DC current estimate:
5 mA digital current e
2 mA per SRAM cell | e
13 mA total current ‘ =

I

Approximately 5 mV DC
droop on supply and
ground
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Supply Resistance Map

Ohm]

* Multiple metal straps keep the
resistance of power distribution
grid < 2 ohms down to Metal 2.

* More power busses and more

internal decoupling lowers area
utilization efficiency.
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Peak current draw and supply variation during operation

Simulation of the transistor

level schematic with Peak current Supply Droop
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TDC clock tree delay
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There is a 20 psec change in the delay through the clock tree when the SRAM is enabled.
The change in delay increases slightly to 25 psec for 2.5 ohms supply impedance.
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1 GHz design

SPI / Register / Test / Control
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« The 1 GHz design includes a clock divider - this allows us to reduce the clock
rate on circuits after the SRAM multiplexor.
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Pipelined SRAM for 1 GHz throughput
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« For 1 GHz operation, we now need to pipeline four SRAMs to meet the read/write timing
requirements.
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Layout — 1 GHz TDC

100 SPAD

I/O to Histogram inputs

Processing

» Additional SRAMs and muxing logic increase layout area by 45%
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VDD & VSS supply voltage drop — 1 GHz

DC current estimate:
7 mA digital current
2 mA per SRAM cell

23 mA total current
Approximately 10 mV DC

droop on supply and
ground.
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Peak current draw & supply variation — 1 GHz design

Peak current increases by Peak Current Supply Droop

") e i< 1oze < >
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TDC clock tree delay — 1 GHz design

* The clock tree delay changes SRAM off SRAM on
by 35 psec when the SRAM is

enabled. N | }1 | R ESERs isaEn
0:7 :: i A 19.5125ns 550.0mV 0:7 :i ‘ E 187.5121115 550.46328n\’
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SRAM 0 SRAM 1
- =SRAMIB

Ii:{AM 0 SRAM 1 SRAM 2 SRAM

SRAM B
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SRAM A
SRAM 0 SRAM 1

Number of SPAD inputs 100 100
SPAD aggregation SST SST
Histogram length 2 usec 2 usec
TDC clock 500 MHz 1 GHz
Histogram bins 1024 2048
Histogram bits 12 bits 12 bits
Testibility, SPI control Included Included
Area 0.15 mm? 0.22 mm?
Power 14 mW 25 mW
Peak Current 38 mA 58 mA
Clock Shift 20 psec 35 psec
Clock Shift (2.5 ohm) 25 psec 83 psec
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Power Routing Issues
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Digital

(TDC, Histogram, DSP, etc.)

Pelligrini, ISSW 2018 -

» SPADs & AFEs require biases, supplies and grounds which O

are very sensitive. 1

* Top metal routing resources and input pins must be H

dedicated to these signals, reducing the amount of power o

routing available to the digital circuitry. il

- 0o o

Digital

(TDC, Histogram, DSP, etc.)

FORZA

AMETEK



Clock jitter mitigation techniques

 Avoid big changes in supply current:
= Algorithm should be designed to avoid bursts of activity
= Clock gating insertion must be scrutinized carefully

* Improve supply connections & decoupling
» Trade-off with layout efficiency

« Separate supplies and grounds

» This can have diminishing returns, due to metal and pin limitations
» Use divided down clocks to reduce power requirement

= But beware slow clocks beating with the high speed TDC clock

Higher speed TDC may not always lead to more accurate TOF results, if timing
jitter degrades.
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