BSI SPAD ARRAYS BASED ON WAFERBOND TECHNOLOGY

Werner Brockherde, Jennifer Ruskowski, Fraunhofer IMS

© Fraunhofer International SPAD Sensor Workshop ISSW2020, Edinburgh, June 8th, 2020

OUTLINE

- Introduction to Fraunhofer IMS
- LiDAR application principles
- Wafer bonding and BSI
- Design example CSPAD3000
- Outlook

2

Fraunhofer Institute for Microelectronics Circuits and Systems **Facts and Figures**

- Founded 1984/85
- Employees more than 250
- Infrastructure
 - Cleanrooms
 - inHaus-Center
 - Budget 33 million EUR in 2019
 - 25 % basic funding for corporate research and administration
 - 25 % publicity funded projects
 - 50 % projects funded by industry

Fraunhofer IMS Infrastructure

Overview LiDAR topics @ Fraunhofer IMS

Chip design & fabrication

CSPAD, SiPM, ROIC Qualification Fabrication

5

Signal processing

Photon coincidence circuits Algorithms & filtering <u>Neuromorphic networks</u>

System design

Camera demonstrators System simulations

3D Integration

Wafer-to-Wafer and Chip-to-wafer bonding for backside illuminated sensors (BSI)

OUTLINE

- Introduction to Fraunhofer IMS
- LiDAR application principles
- Wafer bonding and BSI
- Design example CSPAD3000
- Outlook

6

LiDAR Light Detection and Ranging

Distance measurement with photons

- Stop time after photon arrival: T_{TOF} (ToF = Time-of-Flight)
- Direct Time-of-Flight
- Trend towards solid-state LiDAR

- Autonomous driving
- Satellite rendezvous
- Industrial applications

intern

8

© Fraunhofer

Solid-state LiDAR – illumination method

🗾 Fraunhofer

intern

9

Requirements for LiDAR photo detectors

Highest demand in Flash LiDAR:

- High 2D pixel count for high spatial resolution <u>AND</u>
- Fast acquisition in kHz to MHz
 - Timing information in µs per flash
- High resolution 2D arrays
 - Long measurement range
 - Low power consumption
 - Co-integrated electronics
 - Cost-effective impementation

intern

Example: Detectors for Flash LiDAR Photodiode benchmark

Best choice for Flash LiDAR: Single Photon Avalanche Diodes (SPAD)

Silicon-based detectors

OUTLINE

- Introduction to Fraunhofer IMS
- LiDAR application principles
- Wafer bonding and BSI
- Design example CSPAD3000
- Outlook

Trade off: pixel pitch & in-pixel electronics Current status

CMOS SPAD with merging all parts in one wafer

Limiting pixel resolution due to pixel pitches up to 100 µm

Dominating parameters for the pixel size

- TAPProach 1: Smaller CMOS technology node
- SPAD size, including fill factor, crosstalk probability,... Disadvantages: SPAD performance (e.g. spectral sensitivity) limited by CMOS process & high (initial) costs (masks, wafers)

Approach 2: 3D-Integration of SPAD & CMOS

3D-Integration of SPAD & CMOS 3D stacking with 200 mm wafer-to-wafer bonding

<lu>

- 3D-Integration of SPADs and CMOS ROIC
 - allows effectivley lowering the pixel pitch
 - and cost per pixel

3D-Integration of SPAD & CMOS Wafer-to-Wafer BSI process at IMS

- SOI base wafer is used for SPADs
- Wafer-to-wafer direct bonding
- Etch stop on buried oxide (BOX)
- ALD via metal (direct or bridging via)
- Backside passivation

OUTLINE

- Introduction to Fraunhofer IMS
- LiDAR application principles
- SPAD based LiDAR detectors
- Wafer bonding and BSI
- Design example CSPAD3000
- Outlook

3D-stacked 64x48 2D-CSPAD array CSPAD3000

CSPAD: SPAD with integrated CMOS

- 64 x 48 pixel resolution
- SPAD & ROIC in in-house **350 nm CMOS**
- Back Side Illuminated (BSI) SPAD sensor
- Chip size 10.25 x 10.19 mm²
- Operating in counting & timing modes
- Adaptive coincidence (IMS algorithm) for sunlight suppression

3D-stacked 64x48 2D-CSPAD array Macro pixel

- Pixel pitch of 130 µm
- SPAD size of 40 μm
- Adaptive coincidence circuit for sunlight surpression
 - 4 SPADs in each pixel

Building block Read-out electronics

- In-pixel and global electronics
 - Red pixels: First laser illumination
 - Grey pixels: Second laser illumination
- Read-out speed 20 MHz
 - Sensor read-out 26 kHz
 - Frame rate 13 kHz

64 x 48 2D-CSPAD array Specifications

Read-out concept	Interlaced flash
3D integration details	Backside illuminated SPADs,
	Wafer-to-Wafer bonding
Wafer size	200 mm
CMOS technology:	Both in 0.35 µm CMOS
SPAD / ROIC	
Pixel resolution	64 x 48
Pixel pitch	130 µm
SPADs per pixel	4 (for coincidence algorithm)
SPAD size	40 μm x 40 μm
SPAD active area	14 µm (diameter)
Fill factor	3.6 %
Timing resolution	312.5 ps
Features	Photon coincidence circuit, timing,
	and counting mode
Frame rate	13 kHz
Number of IOs	84
Chip dimension	10.25 x 10.19 mm ²

CSPAD3000 First results

- Break-through voltage ~ 22.5 V
- DCR ~100/SPAD ~0.65/µm²
- No open vias

20

First ToF Images taken

20

0

40

Anzahl der SPADs

60

100

80

Outlook

OPTIONS TO INCREASE PERFORMANCE

ROIC process technology 180 nm CMOS:

Additional factor of 4 in number of pixels

NIR SPAD sensitivity using epi-wafer with optimized specs:

- Increasing 905 nm Quantum Efficiency of SPAD to 25 %
 Wafer-level micro lenses
- **80** % fill factor instead of 4 %

- 3D-Integration approach allows for high-resolution CSPAD-arrays
 - Decrease of pixel pitch by maintaining complex in-pixel electronics
- New interlaced-flash concept
 - Optimum combination of reduced pixel size and flash operation
- Presented 64 x 48 sensor design (CSPAD3000)
 - Sensor for LiDAR & low-light imaging applications
- ⇒ 3D-Integration allows future CSPAD arrays with dramatically better performance and cost

Thank you for your attention

23 © Fraunhofer International SPAD Sensor Workshop ISSW2020, Edinburgh, June 8th, 2020