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ISSW2020 13High-Throughput Single-Molecule Spectroscopy 

§ Arrays
§ 10s’ – 100’s of pixels
§ High fill factor not required 

SPAD Requirements

§ High detection efficiency
§ Red and Near Infrared
§ Limited measurement time

§ Low timing jitter
§ < 100 ps FWHM
§ Small changes in lifetime

Collaboration with Weiss & Michalet group at UCLA

Multiple Excitation Spots
§ Parallel measurement
§ 1 spot ➜ 1 detector
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§ Time Domain Diffuse Correlation Spectroscopy
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§ Quantum Key Distribution in free space
§ Time Domain Diffuse Correlation Spectroscopy
§ Super-Resolution Microscopy
§ Quantum Information Processing
§ …

Similar requirements in many other applications

Lack of SPADs that combine:
§ High detection efficiency in the red / near infrared
§ Low timing jitter
§ Availability of arrays
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THIN SPAD
IN

CUSTOM TECHNOLOGY
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−

§ Carriers generated in the substrate sometime trigger an avalanche
§ Very slow diffusion tail in the temporal response
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+

§ Carriers generated in the substrate cannot trigger an avalanche
§ Short diffusion tail in the temporal response
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ENHANCING THE
DETECTION EFFICIENCY
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Drift Field
§ Extremely high: 2·105 V/cm
§ Breakdown Voltage: 197V

Multiplication Region

Enrichment

Buried Layer
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ISSW2020 34Engineered Extended Epitaxial SPAD 

Drift Field
§ Strongly reduced: 2·104 V/cm
§ Breakdown Voltage: 60V

Multiplication Region
§ Exactly the same

Boron Peak
§ Suitable Dose
§ Deep enough
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Thin SPAD
§ Overvoltage to optimize the 

performance
§ Electric field increase: ΔE
§ Vov= ΔE * (tM + tD)

Thick SPAD 
§ Same multiplication field 

wanted
§ Same ΔE
§ Larger Overvoltage: 20V
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NOT READY FOR ARRAYS
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Lack of full electrical isolation
§ Anodes shorted
§ Lost flexibility for connecting electronic circuits

SPAD #2SPAD #1

Anodes are not isolated
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SPAD #2SPAD #1

Dielectric Isolation
§ Insulating layer between anodes
§ It must reach the substrate
§ Eliminates conductive paths between 

anodes  
How can we do this?

Dielectric Layer
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§ Defined by lithography
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Trench Etch
§ Strongly anisotropic etching 

process (e.g. DRIE)

Isolation Region
§ Defined by lithography
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Trench Etch
§ Strongly anisotropic etching 

process (e.g. DRIE)
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Dielectric Layer
§ Silicon dioxide
§ Cannot completely fill the trench

Refill Layer
§ Polysilicon
§ Prevents voids
§ Reduced stress

Capping Layer
§ Silicon dioxide
§ Trench protection from further oxidation
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SPAD #2SPAD #1

The Sinker does not reach the Substrate
§ High series resistance
§ Influences avalanche current reading
§ Negative impact on timing
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§ Diffused in following steps
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Boron Implantation
§ After trench etch
§ High dose
§ Diffused in following steps

Deep Sinker
§ Low resistivity
§ Reaches the buried layer
§ No additional thermal budget
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SPAD #2SPAD #1

Additional advantage
§ Compactness (3μm-wide) è Denser arrays

Potential problem
§ Stress introduced during fabrication è May increase Dark Count Rate
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EXPERIMENTAL RESULTS
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57Temporal Response

Gulinatti et al, J Mod Optic 59(17), (2012), doi:10.1080/09500340.2012.701340
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FWHM = 93ps
Device Jitter

Thin SPAD < 35 ps

RE-SPAD < 100 ps

Thick SPAD > 250 ps

Gulinatti et al, J Mod Optic 59(17), (2012), doi:10.1080/09500340.2012.701340

59Temporal Response
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Ceccarelli et al, IEEE PTL 30(6), 557-560, (2018), doi:10.1109/LPT.2018.2804909

§ 32 x 1 pixels
§ Active diameter: 50 µm
§ Pitch: 250 µm

Designed for NIH funded project:
§ Weiss / Michalet group at UCLA
§ High-throughput Single Molecule Analysis

Array geometry:
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Features
§ Temperature control
§ Individual photon pulses available 
§ On board FPGA for basic processing
§ High speed USB link

Hermetically Sealed Chamber
§ Contains both SPADs and AQCs
§ Dry atmosphere
§ Cooling without moisture issues
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§ Confirmed high Photon Detection Efficiency
§ Good uniformity across the arrays
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NEXT DEVELOPMENTS
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Aim: 3D atomic-scale movies of molecular machine in action
Funding: Human Frontier Science Program (HFSP) 
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Aim: 3D atomic-scale movies of molecular machine in action
Funding: Human Frontier Science Program (HFSP) 

§ How close we can get? 
§ What does limit the compactness?

Array Geometry
§ 128 x 1 pixels
§ Active size: 50 µm
§ Pitch: 80 µm

Questions
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§ Extends across the whole wafer
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Charge Layer
§ Epitaxial doping
§ Extends across the whole wafer

Problems
§ Maximum bias voltage < 50V
§ Strong limitation for biasing with Vov ≈ 20V

Edge Breakdown
§ Reduction to ≃ 50V
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VBD, EDGE ΔVGR ΔVGR

Guard Rings allow Bias Voltage > Edge Breakdown

Problems
§ Lack of Compactness
§ Complexity

Must be removed
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Solution
§ Confine the charge layer to the active area 
§ Fabrication by high energy ion implantation
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Solution
§ Confine the charge layer to the active area 
§ Fabrication by high energy ion implantation

B+
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3D INTEGRATION
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SPAD Array

AQC Chips

§ Array size limited by wire bonding
§ Max ≈ 100 pixels
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Best technology for 
SPAD (custom)

§ Solves wire-bonding limitations
§ Arrays size > 1000 pixels

Best technology for 
read-out electronics

(CMOS)

Bump-bonding
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Red-Enhanced SPAD technology:
§ High detection efficiency (70% @ 600 nm) / Low timing jitter (90 ps FWHM)
§ 32 x 1 array demonstrated
§ Arrays with more pixels and more compact layout on the way
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HIGH REPETITION RATE
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§ Needed to quench the avalanche and to reset the bias
§ Thin SPAD: dead time 6.2 ns è 160 Mcount/s
§ Red Enhanced SPAD: dead time 12.5 ns è 85 Mcount/s

Acconcia et al, Optics Express 24(16), 17819, (2016), doi:10.1364/OE.24.017819
Acconcia et al, Rev. Sci. Instr. 88, 026103, (2017), doi:10.1063/1.4975598
Ceccarelli et al, IEEE PTL 30(4), 391-394 (2018), doi:10.1109/LPT.2018.2792781

Dead Time = 6.2ns


