

ISSW2020

"THE INTERNATIONAL SPAD SENSOR WORKSHOP"

June 8 – 10, 2020

CUSTOM SILICON TECHNOLOGIES FOR HIGH DETECTION EFFICIENCY SPAD ARRAYS

Angelo Gulinatti^{*}, Francesco Ceccarelli, Giulia Acconcia, Massimo Ghioni, Ivan Rech

*email: angelo.gulinatti@polimi.it

OUR IDEA

3

CMOS Technology

CMOS steps for SPAD fabrication

- ✓ Smart Pixels / Complex Systems
- ✗ No SPAD optimization

Custom Technology

- ✓ SPAD optimization
- **K** External electronics

Custom Technology

- ✓ SPAD optimization
- External electronics

Two Approaches for Si-SPAD

CMOS Technology

CMOS steps for SPAD fabrication Smart Pixels / Complex Systems

No SPAD optimization

Custom Technology

- ✓ SPAD optimization
- **#** External electronics

Two Approaches for Si-SPAD

ISSW2020

CMOS Technology

CMOS steps for SPAD fabrication Smart Pixels / Complex Systems No SPAD optimization

<section-header>

- ✓ SPAD optimization
- **#** External electronics

APPLICATIONS

POLITECNICO DI MILANO

8

Collaboration with Weiss & Michalet group at UCLA

POLITECNICO DI MILANO

Angelo Gulinatti

ISSW2020

9

Collaboration with Weiss & Michalet group at UCLA

June 8th, 2020

Angelo Gulinatti

POLITECNICO DI MILANO

Collaboration with Weiss & Michalet group at UCLA

Collaboration with Weiss & Michalet group at UCLA

Collaboration with Weiss & Michalet group at UCLA

POLITECNICO DI MILANO

Collaboration with Weiss & Michalet group at UCLA

Angelo Gulinatti

. . .

Similar requirements in many other applications

- Quantum Key Distribution in free space
- Time Domain Diffuse Correlation Spectroscopy
- Super-Resolution Microscopy
- Quantum Information Processing

14

. . .

Similar requirements in many other applications

- Quantum Key Distribution in free space
- Time Domain Diffuse Correlation Spectroscopy
- Super-Resolution Microscopy
- Quantum Information Processing

Lack of SPADs that combine:

- High detection efficiency in the red / near infrared
- Low timing jitter
- Availability of arrays

THIN SPAD IN CUSTOM TECHNOLOGY

Angelo Gulinatti

17

- Carriers generated in the substrate sometime trigger an avalanche
- Very slow diffusion tail in the temporal response

19

Enrichment Shallow n Cathode n+ p+ p-٦ n+ Substrate \Rightarrow

20

Enrichment Shallow n Cathode n+ p+ pn+ √73 € Substrate \sim

- Carriers generated in the substrate cannot trigger an avalanche
- Short diffusion tail in the temporal response

ISSW2020

21

Enrichment Shallow n Cathode n+ p+ p-Ъ n+ n+ Isolation n+ Substrate

22

Enrichment Shallow n Cathode Anode n+ p+ pn+ n+ Isolation n+ Substrate 1

23

Enrichment Shallow n Cathode Anode n+ p+ p-٦ n+ n+ **Buried Layer** p+ Isolation n+ Substrate 3

24

Enrichment Shallow n Cathode Anode n+p+ p-Ъ n+ p+ n+ p+ **Buried Layer** p+ Isolation Sinker n+ Substrate 3

ENHANCING THE DETECTION EFFICIENCY

Increasing the Detection Efficiency

- Only the photons absorbed in the upper layer can be detected
- Limited PDE at longer wavelengths

27

Increasing the Detection Efficiency

Only the photons absorbed in the upper layer can be detected

Limited PDE at longer wavelengths

- Thicker p- layer
- Not sufficient for good performance

POLITECNICO DI MILANO

28

Increasing the Detection Efficiency

Only the photons absorbed in the upper layer can be detected

Limited PDE at longer wavelengths

- Thicker p- layer
- Not sufficient for good performance

POLITECNICO DI MILANO

29

Extended Double Epitaxial SPAD

POLITECNICO DI MILANO

30

Extended Double Epitaxial SPAD

ISSW2020

31

Engineered Extended Epitaxial SPAD

POLITECNICO DI MILANO

Engineered Extended Epitaxial SPAD

Engineered Extended Epitaxial SPAD

Thin SPAD

- Overvoltage to optimize the performance
- Electric field increase: ΔE
- Vov= ΔE * (t_M + t_D)

Thin SPAD

- Overvoltage to optimize the performance
- Electric field increase: ΔE
- Vov= ΔE * (t_M + t_D)

Thick SPAD

- Same multiplication field wanted
- Same ΔE
- Larger Overvoltage: 20V

36

NOT READY FOR ARRAYS

Lack of full electrical isolation

- Anodes shorted
- Lost flexibility for connecting electronic circuits

38

Dielectric Isolation

- Insulating layer between anodes
- It must reach the substrate
- Eliminates conductive paths between anodes

POLITECNICO DI MILANO

40

POLITECNICO DI MILANO

41

Fabrication: Planarization and Capping

- Influences avalanche current reading
- Negative impact on timing

Additional advantage

Compactness (3µm-wide) → Denser arrays

Additional advantage

Compactness (3µm-wide) → Denser arrays

Potential problem

Stress introduced during fabrication → May increase Dark Count Rate

EXPERIMENTAL RESULTS

Angelo Gulinatti

POLITECNICO DI MILANO

54

55

0.8 Thick SPAD **RE-SPAD** 0.7 Thin SPAD 0.6 Photon Detection Efficiency 0.5 **Longer Wavelengths** 0.4 Considerable improvement 40% @800nm 0.3 2.5x Improvement @800nm 0.2 0.1 0 400 500 600 700 800 900 1000 Wavelength (nm)

56

Angelo Gulinatti

POLITECNICO DI MILANO

June 8th, 2020

Angelo Gulinatti

POLITECNICO DI MILANO

Angelo Gulinatti

June 8th, 2020

ISSW2020

60

Deep trenches have no effect on the Dark Count Rate

ISSW2020 62

1 mm

Designed for NIH funded project:

- Weiss / Michalet group at UCLA
- High-throughput Single Molecule Analysis

Array geometry:

- 32 x 1 pixels
- Active diameter: 50 μm
- Pitch: 250 µm

Ceccarelli et al, IEEE PTL **30**(6), 557-560, (2018), doi:10.1109/LPT.2018.2804909

Compact Photon Counting Modules

ISSW2020 64

Features

000000000000

- Temperature control
- Individual photon pulses available
- On board FPGA for basic processing
- High speed USB link

Hermetically Sealed Chamber

- Contains both SPADs and AQCs
- Dry atmosphere
- Cooling without moisture issues

Angelo Gulinatti

POLITECNICO DI MILANO

- Confirmed high Photon Detection Efficiency
- Good uniformity across the arrays

POLITECNICO DI MILANO

65

NEXT DEVELOPMENTS

- **Aim:** 3D atomic-scale movies of molecular machine in action
- Funding: Human Frontier Science Program (HFSP)

- Aim: 3D atomic-scale movies of molecular machine in action
- Funding: Human Frontier Science Program (HFSP)

Array Geometry

- 128 x 1 pixels
- Active size: 50 μm
- Pitch: **80 μm**

- **Aim:** 3D atomic-scale movies of molecular machine in action
- Funding: Human Frontier Science Program (HFSP)

Array Geometry

- 128 x 1 pixels
- Active size: 50 μm
- Pitch: **80 μm**

Questions

- How close we can get?
- What does limit the compactness?

Problems

- Maximum bias voltage < 50V
- Strong limitation for biasing with Vov ≈ 20V

74

Guard Rings allow Bias Voltage > Edge Breakdown

Guard Rings allow Bias Voltage > Edge Breakdown

Problems

- Lack of Compactness
- Complexity

Guard Rings allow Bias Voltage > Edge Breakdown

Problems

- Lack of Compactness
- Complexity

Must be removed

Solution

- Confine the charge layer to the active area
- Fabrication by high energy ion implantation

ISSW2020

78

Solution

- Confine the charge layer to the active area
- Fabrication by high energy ion implantation

3D INTEGRATION

- Array size limited by wire bonding
- Max ≈ **100 pixels**

- Solves wire-bonding limitations
- Arrays size > 1000 pixels

Red-Enhanced SPAD technology:

- High detection efficiency (70% @ 600 nm) / Low timing jitter (90 ps FWHM)
- 32 x 1 array demonstrated
- Arrays with more pixels and more compact layout on the way

Research reported in this presentation was supported by:

- **National Institutes of Health (**R01-GM095904)
- Provincia Autonoma di Bolzano Alto Adige, (INN R&D/2011/17)
- **European Commission**, *Q-Essence* (FP7-ICT-2009-4)
- Cornell NanoScale Science & Technology Facility
- Human Frontier Science Program

HIGH REPETITION RATE

Angelo Gulinatti

- Needed to quench the avalanche and to reset the bias
- Thin SPAD: dead time 6.2 ns → 160 Mcount/s
- Red Enhanced SPAD: dead time 12.5 ns → 85 Mcount/s

Acconcia et al, Optics Express **24**(16), 17819, (2016), doi:10.1364/OE.24.017819 Acconcia et al, Rev. Sci. Instr. **88**, 026103, (2017), doi:10.1063/1.4975598 Ceccarelli et al, IEEE PTL **30**(4), 391-394 (2018), doi:10.1109/LPT.2018.2792781

June 8th, 2020

Angelo Gulinatti

POLITECNICO DI MILANO