

International SPAD Sensor Workshop 2020

LIDARs @ CSEM

SPAD for space active debris removal and exploration

Alexandre Pollini, LiDAR activity manager <u>alexandre.pollini@csem.ch</u>

Matteo Perenzoni FBK Christophe Pache CSEM

Presentation outline

CSEM

Technology partner

Space heritage

Applications

Solutions

Conclusion

Our mission

3

Development and **transfer of mature technologies** to the industrial sector – in Switzerland, as a priority – in order to reinforce its competitive advantage.

Cooperation agreements with established companies

Encouraging the creation of start-ups

CSEM at a glance

(4)

Markets and shareholding

Scientific Instrumentation, Systems

Precision mechanisms

Quantum devices

Stabilized lasers

" csem

6

Pillars of our success : technology and system integration

7

Space heritage

8

" csem

Lidars

Space developments

Applications

csem

MILA Breadboard

"Csem

Space application: rendezvous

- E.g. Debris removal, satellite refuelling
- Limited processing ressources on-board
- High image **sparsity**
- Background changes (eclipse, no eclipse, Earth in background)
- Trajectory: complex
- SWaP: 10x10x10 cm³, <2 kg, 5W
- 2 phases:

Distance Satellite - Target	> 200m	< 200 m
Relative Velocity	A few m/s	0 m/s
Main function	Distance measurement	Real-time profilling Identification
Accuracy	1 m	5 cm
Measurement rate	10 Hz	1 Hz
FOV	<]°	> 20°

Exploration

- E.g. landing on asteroids/Mars
- Limited processing ressources on-board
- Low image sparsity
- Background can be chosen
- Trajectory: linear
- SWaP: 20x20x20 cm3, <6 kg, 50W
- 3 phases:

Distance Satellite - Target	> 1000 m	500-1000 m	< 500 m
Relative Velocity	65 m/s	30 m/s	1 m/s
Main function	Distance measurement	Relative Attitude	Mapping Hazards detection
Accuracy	1 m	10 cm	5 cm
Measurement rate	10 Hz	1 Hz	1 Hz
FOV	<]°		> 20°

Technology ingredients

csem

MILA Breadboard

acser

Indirect and direct time-of-flight

Speciality: Flash imaging LiDAR architecture

" CSem

* CSem

15)

- Towards all solid-state
 - Simplicity: better integration, low cost
 - **Reliabiliy**: longer product lifetime
 - Image quality: robust against motion blur and vibrations
 - High resolution: diffraction-limited, not limited by scanning mechanism precision

Technology trend

- Towards miniaturisation
- Automotive market defines benchmarks
 - All solid-state
 - Low-cost
- Unmanned vehicles increase demand for LiDAR

LiDAR volume forecast in M units

Source: Yole Développement

16

Technology	direct IOF	FMCW		
Wavelength	800-900 nm	1500 nm		_
Laser	VCSEL	pulsed solid-state	CW	
Detector	SPAD	SiPM	InGaAs	APD
Scanning	mechanical	MEMS	Flash / multi-beams	ΟΡΑ

Versatile hybrid flash imaging LiDAR

• 2D Time-Of-Flight detector

Focc (e.g.

Focal plane array (e.g. 4x detectors)

Illumination Patterns

Solution for Rendezvous

RemoveDebris

- A low-cost Active Debris Removal mission (EC)
- Launch with SpaceX 2 April 2018
- ISS tethering Dragon Capture 4 April 2018
- Released in space from ISS 20 June 2018
- Commissioning in-orbit June-August 2018
- Experiments: net, visual-based navigation, harpoon
- Mission end March 2019

CSEM

- 1. iTOF architecture
- 2. Parameters programmed several days in advance
- 3. Relative positioning debrischaser to favor standard cameras

Compressive sensing

csem

MILA Breadboard

"Csen

Flash Imaging LIDAR Compressive sensing

- Gain = Spatial resolution increase
- Cost =

Increased complexity and power consumption

22

N independent CS reconstructions

Solution for Exploration csem

MILA Breadboard

"Csen

MILA64

Design: Fondazione Bruno Kessler / IRIS

64x64 pixels, 8 spads/pixel (1Gph/s), dSiPM, 1 16 bits TDC/pixel, correlation fct.

System specifications

Architecture	d-TOF/SPC (VIS, green)
Application (space)	Exploration
Focal Plane resolution	128 x 128
Technology Readiness Level	4
3 operation modes	Altimeter, Attitude meter, 3D imager
Precision (in air)	< 5 cm at 1100 m (altimeter) at 200 m (3D imager)
Dynamic range	distance: 40 dB intensity: 8 dB
FOV	5.8°
Size [cm ³]	25 x 31 x 24 17 x 17 x 20 (MILABIS)
Mass [kg]	< 8
Power consumption [W]	60
Frame rate [Hz]	8 (20)

(26)

MILA project results

	Requirements		MILA Breadboard			
	Altimeter	Attitude	Imaging	Altimeter	Attitude	Imaging
Max range	> 2 km		< 1 km	1.1 km		300 m
Min range	7 m		5 m	6 m		6 m
Ranging accuracy	1 m		0.05 m	< 0.05		< 0.05
Horizontal resolution	-		0.2 m	-		0.24 m
Target Area	-		10-100 m			
Attitude measurement	-	10°	-		10°	
Measurement rate	< 2 Hz		< 2 Hz		1.5	
Velocity	< 65 m/s		< 31.5 m/s			
Pulses/measurement	> 200		< 250	compliant		compliant
FOV	1-2°		< 19°	compliant		compliant

Most tests successful except for:

- Spatial resolution at 300 m distance: required < 20 cm, measured 23.73 cm
- Dynamic imaging: saturation impacted measurements → lack of DoF to adjust operation settings (e.g. laser power, SPAD sensitivity)
- Sensitivity to ambient sunlight

- Irradiation increases DCR and afterpulsing, and shift breakdown voltage
- The sensors are fully operational after irradiation
- Architectural robustness (number of photons discrimination)

Current developments

System level (CSEM)

- On optics: single Fresnel abandonned, more traditional optical elements implemented
- On detector control: rush current limited electronically and gating

• Detector (FBK)

- Higher spatial resolution: 512x512 minimum
- New resolution + TDC depth + keep same image rate \rightarrow challenge on data rate
- Higher DoF on link budget by adjustable sensitivity
- Correlation (MILA) + Radiation hardness by design
- ROI according to operation mode

Turn-key developments for challenging applications

THANK YOU FOR YOUR ATTENTION!

www.csem.ch/Instrumentation

30)

