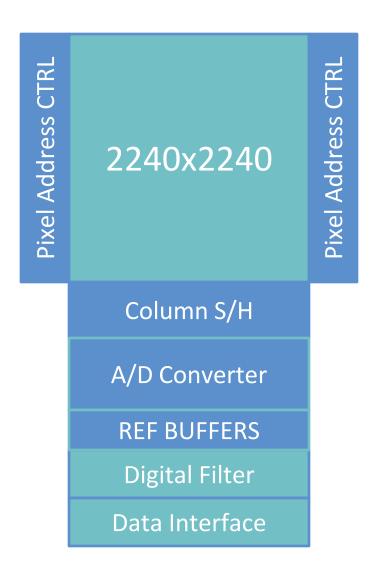
www.onsemi.com

ON Semiconductor[®]


A 5 Megapixel, 1000 fps CMOS Image Sensor with High Dynamic Range and 14 bit A/D Converters

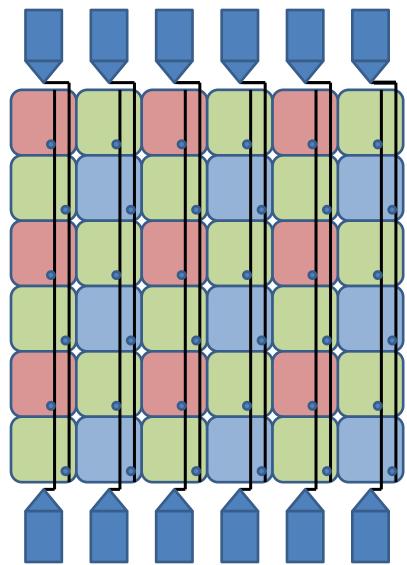
Bart Cremers

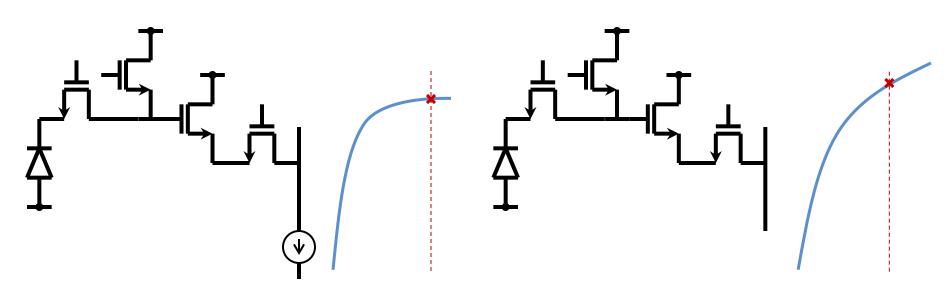
IISW 2013

Overview of Sensor Specifications

- 5 Megapixel Image Sensor
 - 1000fps @ full resolution
 - 2000fps HDTV format
 - Rolling & Global Shutter
 - 14-bit A/D converters
 - 5e- noise, 20ke- FWC
 - Patterns <1/3rd of noise floor
 - Clean RAW image
- 70 LVDS channels @ 1Gbps
- >2.5Million ASIC gates

Challenges in this Work


- High Speed Pixel Readout
- High Speed 14-bit A/D Conversion
- Drift Free raw image, no calibration, no scene dependent artifacts
- High speed Interface and Packaging


ON Semiconductor[®]

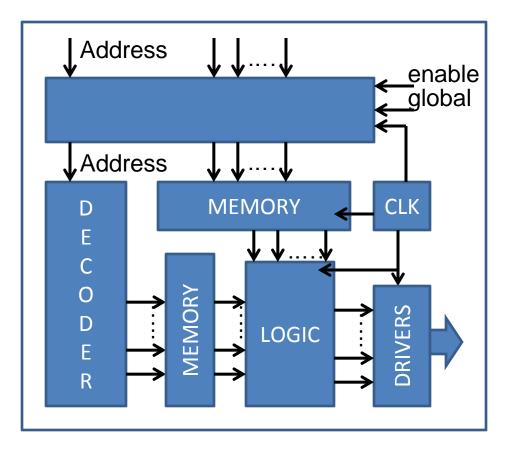
Pixel Readout Scheme

- 2 lines read in parallel
- Electrical crosstalk == color crosstalk !
- Column will not settle to 14-bit accuracy
- Successful column memory removal is critical

Column Settling

Source Follower loaded by current source.

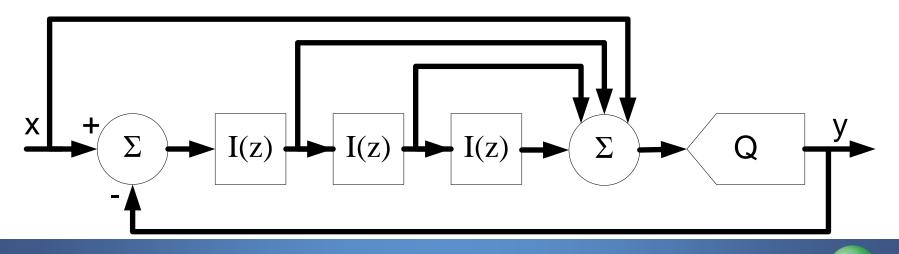
Settles to desired accuracy.


No current load. Sample SF output during settling.

- More SF gain → Lower Noise
- Lower intrinsic SF noise
- More swing
- One less source of FPN/PRNU

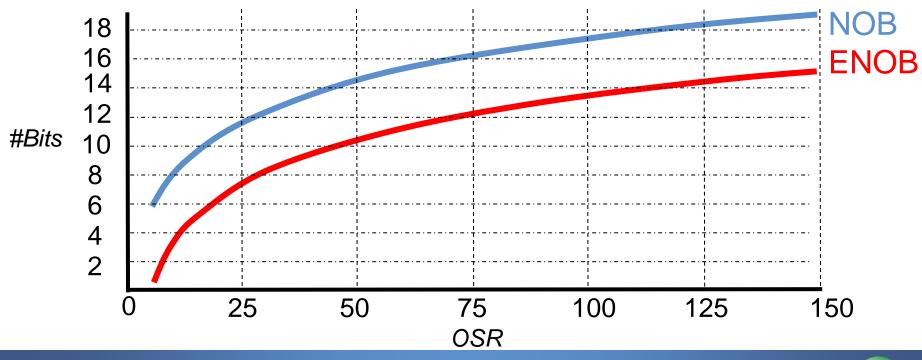
Flexible Addressing

- Directly addressable
 pixel array
- Line-based memory
- Allows random scheduling of row based operations
- Supports both pointerbased as well as global operations



Confidential Proprietary

ADC architecture


- 3rd Order CIFF Delta Sigma Modulator
 - Single bit quantizer
 - Excellent loop stability
 - Shared reference voltage for all modulators
 - Uniform power consumption over the entire line time for any signal value

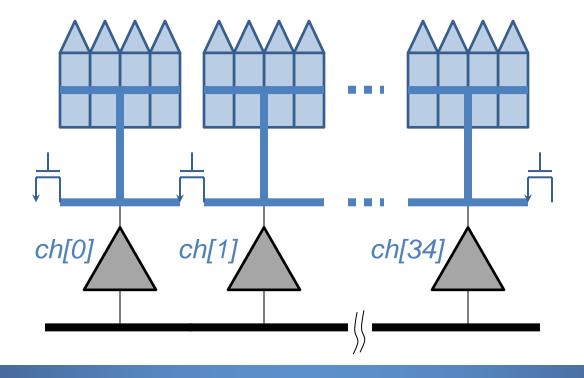
Intrinsically gain matched Calibration-free

ADC architecture

- Scales very well for high speed high resolution combinations
- Changing <u>OSR</u> allows <u>trade-off</u> @ run-time :
 - noise & resolution vs frame rate
 - noise & resolution vs power

ADC architecture

• Trade-off : artifact-free operation vs power & noise


	Digital CDS	Analog CDS
Temporal Noise	<5e-	<4e-
Column-wise offset & gain differences	< 0.3x noise floor	10x noise floor
Power	8 W	4 W
	DSM – 30% References – 40% Filter – 20%, Clock – 10%	

- Focus for future work
 - Reduce power consumption in Filter and References
 - Reduce artifacts in analog CDS mode

ON Semiconductor[®]

Reference Voltage Uniformity

- Differences lead to Column FPN and PRNU
- Large distance (>1cm) requires distributed buffering
- Outputs of buffers are shorted
- Add switches for windowed read-out and low-power modes

ON Semiconductor[®]

Key Specifications

Parameter	Value	Comment
Technology	0.18um CIS	
Resolution	2240 x 2240	
Frame Rate	1000 fps	Rolling Shutter
Temporal Noise	5 e-	
FWC	20 ke-	
DR	72 dB	Intra-Scene
Peak QE	> 50 %	@ 633 nm
MTF	63 %	@ 633 nm, @ nyquist freq.
Power consumption	10 W	Main supply voltage 1.8 / 3.3 V
ADC resolution	14 bit	#4480 ADCs in column parallel architecture
Total Data Rate	70 Gbps	70 LVDS channels @ 1Gbps

Thank You

Confidential Proprietary