

Early Research Progress on Quanta Image Sensors

Saleh Masoodian, Yue Song, Donald Hondongwa, Jiaju Ma, Kofi Odame and <u>Eric R. Fossum</u> *June 15, 2013*

thayer school of ENGINEERING AT_DARTMOUTH

End to End System Simulation

Input Image 256x256 8b

→ 4096x4096 1b x 16 fields = 268 Mb

$H = \frac{S_H h_o}{255}$

Output Image 1024x1024 8b

© E.R. Fossum 2013

in this example 1 pixel = Σ 4x4x16 jots $SNR \le \sqrt{256}$

Convolution

20

10

0 0

2D Examples:

Binary valued filter

Binaryweighted filter

-3-

10

40

Down

sample

Digital Film Sensor Algorithm

-4-

Readout Signal Chain Strawman Design

General requirements:

- Need to scan 0.1-10 Gjots at 100-1000 fields per sec
- 8k 80k jots per column $\rightarrow 0.8 80M$ jots/sec

Assumptions:

- 0.1 Gjot at 100 fps \rightarrow 1Mjot/sec
- 1 mV/e- conversion gain
- 150 uV rms noise on column bus (0.15 e- rms)
- 0.18 um process
- Vdd = 1.8V

thayer school of ENGINEERING AT DARTMOUTH

Readout Signal Chain

column bus

Process	V _{DD}	Jot array	Column Speed	Column power	Comp power	Total	Array Power
CURRENT DESIGN							
0.18um	1.8V	0.001 Gjots (1k X 1k)	1MJ/s (1000fps)	0.71uW	1.28uW	1.99uW	1.99mW
0.18um	1.8V	0.1 Gjots (10k X 10k)	1MJ/s (100fps)	6.44uW	1.28uW	7.72uW	77.2mW
SCALED DESIGN							
0.18um	1.8V	0.1 Gjots (10k X 10k)	10MJ/s (1000fps)	64.4uW	12.8uW	77.2uW	772mW
45nm	1.1V	1 Gjots (24k X 42K)	24MJ/s (1000fps)	57uW	2.9uW	59.9uW	2.5W
22nm	0.8V	1 Gjots (24k X 42K)	24MJ/s (1000fps)	20uW	0.74uW	20.74uW	0.87W
45nm	1.1V	10 Gjots (75k X 133k)	75MJ/s (1000fps)	553uW	9uW	562uW	75W
22nm	0.8V	10 Gjots (75k X 133k)	75MJ/s (1000fps)	197uW	2.3uW	199.3uW	26.5W

Adapted from Kotani et al. 1998

© E.R. Fossum 2013

THAYER SCHOOL OF ENGINEERING DARTMOUTH AΤ

Process

0.18um

VDD

1.8V

Jot array

0.001 Gjots

Readout Signal Chain

Column

power

0.71uW

CURRENT DESIGN

Comp

power

1.28uW

Total

1.99uW

7.72uW

77.2uW

59.9uW

20.74uW

562uW

199.3uW

Column

Speed

1MJ/s

-7-

© E.R. Fossum 2013

Array

Power

1.99mW

77.2mW

772mW

2.5W

0.87W

75W

26.5W

Jot Device Considerations

General requirements:

- 200 nm device in 22 nm process node ("10L")
- High conversion gain > 1 mV/e- (per photoelectron)
- Small storage well capacity ~1-100 e-
- Complete reset for low noise
- Low active pixel transistor noise <150 uV rms
- Low dark current ~ 1 e-/s
- Not too difficult to fabricate in CIS line

For early investigation

- Cobbled together an imaginary 85 nm process
- Students learning to use TCAD tools etc.
- Anticipate that device principles can be migrated to real process

Bipolar Jot Concept

- CMOS APS but use pinning layer as emitter, storage well as base
- Complete reset of base using "TG"
- Emitter follower to reduce base-emitter cap

BSI CMOS APS Jot with Storage under Transfer Gate

- Low capacity storage gate makes barrier easier to overcome with low TG voltage
- Minimum FD size to increase conversion gain

Storage under transfer gate first proposed in Back Illuminated Vertically Pinned Photodiode with in Depth

-10- Charge Storage, by J. Michelot, et al., 2011 IISW

© E.R. Fossum 2013

Summary

- Early progress made on realizing Quanta Image Sensor
- >1 year support of Rambus (thanks Rambus!)
- Students up to speed and making headway
- Challenges don't look as challenging
- Lots of work to do!