

Application of Photon Statistics to the Quanta Image Sensor

Eric R. Fossum *June 15, 2013*

© E.R. Fossum 2013

Quanta Image Sensor

Jot = specialized SDL pixel, sensitive to a single photoelectron with binary output, "0" for no photoelectron, "1" for at least one photoelectron.

Many jots are needed to create a single image pixel.

e.g. 16x16x16 = 4,096

A QIS might have 1G jots, read out at 1000 fields/sec or 0.5 Tbits/sec

Photon and photoelectron arrival rate described by Poisson process

Define *quanta exposure* $H = \phi \tau$ T = 1 means expect 1 arrival on average.

Probability of k arrivals

For jot, only two states of interest $P[0] = e^{-H}$ $P[k > 0] = 1 - P[0] = 1 - e^{-H}$

For ensemble of *M* jots, the expected number of 1's : $M_1 = M \cdot P[k > 0]$

-4-

THAYER SCHOOL OF ENGINEERING AT DARTMOUTH

Bit Density Bit Density $D \triangleq \frac{M_1}{M} = 1 - e^{-H}$

© E.R. Fossum 2013

ΤΗΑΥΕΡ

Т

SCHOOL OF **Film-like Exposure Characteristic** EERING ENGIN DARTMOUTH

QIS D – log H

Bit Density vs. Exposure

Film D – log H

Film Density vs. Exposure 1890 Hurter and Driffield

Raindrops on Ground

H~ 0.3 ?

© E.R. Fossum 2013

Multi-Arrival Threshold (Not QIS)

Binary output of sensor ="1" when # of arrivals $k \ge k_T$ Results in reduced higher slope and less overexposure latitude

"Shot" Noise

Variance of a binomial distribution $\sigma_1^{\ 2} = M \cdot P[0] \cdot P[k > 0]$

Exposure-Referred Noise

$$\sigma_H = \sigma_1 \frac{dH}{dM_1}$$
 $SNR_H = \frac{H}{\sigma_H} = \sqrt{M} \frac{H}{\sqrt{e^H - 1}}$

M=4096

Exposure-Referred Noise

$$\sigma_H = \sigma_1 \frac{dH}{dM_1}$$
 $SNR_H = \frac{H}{\sigma_H} = \sqrt{M} \frac{H}{\sqrt{e^H - 1}}$

Read Noise and Bit Error Rate (BER)

thayer school of ENGINEERING AT DARTMOUTH

BER vs. Read Noise

 $BER = \frac{1}{2} erfc \left(\frac{1}{\sqrt{8}n_r}\right)$ What is an acceptable bit error rate?

thayer school of ENGINEERING AT DARTMOUTH

BER vs. Read Noise

-13-

Increased Dynamic Range

Sum of 16 fields 4@ T=1.0 4@ T=0.2 4@ T=0.04 4@ T=0.008

Multi-bit Pixels

Counting low number of photoelectrons, e.g. 4b yields FW = 15 e-

Sum 4x4x16 = 256 pixels Max = 15x256 = 3840

QIS: M=4096 4b: M=273

Shot Noise and Read Noise

 $P[k] = \frac{e^{-H} H^k}{k!}$

© E.R. Fossum 2013

k=

___0

___2

----6

----7

- 8

- 10

—9

10

9

-4 5

thayer school of ENGINEERING AT DARTMOUTH

Effect of Read Noise on Photoelectron Counting for Multi-bit Pixel

Note "peak" for H=5 is not at 5 e-

Summary

- Introduced concept of quanta exposure
- Quantified D-log H response
 - No adjustable parameters should be very reproducible sensor to sensor.
 - Can retrieve H reliably over large range including non-linear portion (0.1 < H < 5)
- Quantified "shot" noise in QIS
- Effect of read noise on BER analyzed
- Extended DR with almost flat SNR discussed
- Multi-arrival and multi-bit pixels also addressed.
- More details in paper submitted to JEDS.