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1 Introduction 

A comparison of four high dynamic range (HDR) CMOS image sensor (CIS) technologies is presented. Pixel size is 6um, technology is FSI, and 

target application is automotive where low-light performance, dynamic range, and fast motion is of particular concern. 

2 HDR methods 

The sensors considered in this work combine two captures with high and low sensitivity into one HDR output image.  

Skimming HDR (fig.1) obtains its response knee-point by asserting after a time (T1) a mid-level voltage pulse on the transfer gate (TG) whilst 

photon charge is being integrated [1-2]. The falling edge of this pulse defines the start of the 2nd (short) exposure (T2). The ratio between the long 

and short integration times, i.e. (T1+T2)/T2, defines the DR extension. This assumes that the CDS time (T3) illustrated in fig.1 is negligible 

compared to T1 and T2. The mid-level voltage defines a potential barrier under TG in such a way that any PD charge above this barrier level is 

skimmed (drained) to the supply (AVDD) via the floating diffusion node (FD) and the reset transistor (RST). This effectively splits the PD full 

well capacity (FWC) in two parts. A 50-50 split is assumed in this comparison. 

Staggered multi-capture HDR (fig.2) combines one long and one short integration time capture [3-6]. The rolling shutter readout is staggered 

(row interleaved) so that the short integration (Tshort in red) starts immediately after sampling of the long integration (Tlong in green). Tlong 

pixel values are stored in line buffers until Tshort values for the same pixel row become available to perform HDR combination in digital domain. 

Down-sampling HDR (fig.3) trades off pixel resolution for increased DR by combining neighboring pixels with different integration times [7-8]. 

One of OmniVision’s alternating line approaches is illustrated in the figure below, where T1/T2 represents long/short integration times, 

respectively. Note this particular sensor also uses RGBC CFA for improved light sensitivity. RGBC is equally applicable to the other HDR 

schemes and is therefore not included in the below light sensitivity comparison. 

The forth technology is called split-diode HDR [9] and is developed for automotive applications (fig.4). Each pixel has one large photodiode 

(LPD) and one small photodiode (SPD). The diodes are exposed simultaneously, which makes the sensor inherently immune to ghost artifacts 

caused by scene motion (ref below). Sensitivity ratio and DR is further enhanced by use of dual CG readout (CGC). Ratio of Hi/Lo CG is 3x, and 

the same CG ratio is applicable to all HDR schemes to make the comparison valid. 

3 Dynamic range 

We define dynamic range (DR) as Smax/Smin, where Smax=FWC (full well capacity) and Smin=Nfloor (read noise floor). Two captures 

combined, having high/low sensitivity ratio R, yield a DR as follows (in bits): DR = log2(FWC x R / Nfloor). 

Nfloor is set to 1.2e- rms for all HDR schemes (same CG, BC-SF and CDS circuitry). The max value of R is constrained by the minimum 

allowable S/N ratio at the knee-point. We set minimum SNR to 25dB to ensure high image quality across the entire signal range. Resulting DR is 

provided in the table below. 

HDR method Pixel size (um) Nfloor (e- rms) FWC (e-) Ratio, R DR (bits)

Skimming 6 1.2 15000 47.4 19.2

Staggered 6 1.2 30000 94.9 21.2

Down-sampling 6 1.2 30000 94.9 21.2

Split-diode 6 1.2 30000 94.9 19.6  

Best DR performance (21.2bits) is achieved with staggered HDR and down-sampling HDR. Skimming HDR is limited to 19.2bits. This is 

because of the potential well which is split into two parts, thus reducing FWC by 50%. Split-diode HDR is limited to 19.6bits due to reduced 

FWC of SPD (10k vs 30k) as illustrated in fig.5. 

4 Low-light performance 

Low-light performance depends on the optical lens, pixel responsivity, noise floor, and integration time (Tframe). From these parameters we 

calculate scene illumination equivalent to SNR=1 (ESNR1) assuming a lambertian white object:  

      
          

              
 

, where F is lens number, Tlens is lens transmission, and S is responsivity (e-/lux-s). Using Tlens=0.92 the calculated result is shown below. 

HDR method Pixel size (um) Nfloor  (e- rms) Responsivity (e-/lux-s) Lux@SNR1, 60fps, F1.4

Skimming 6 1.2 113650 0.0054

Staggered 6 1.2 113650 0.0054

Down-sampling 6 1.2 113650 0.0054

Split-diode 6 1.2 113650 0.0054  

This shows that 5.4mlux minimum illumination is achieved for each HDR capture scheme. Even though the split-diode concept uses a more 

complex pixel light sensitivity is maintained thanks to large pixel size which enables close to 100% fill-factor of LPD+SPD with dual micro-lens 

and other process optimization steps. 
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5 Motion performance 

Combining high and low sensitivity values into one HDR output value is trivial when there is zero motion involved. For instance, one 

straightforward approach is to add the two signals together and apply a gain (R+1) after the knee-point, thus forming a linear (straight line) output 

response from zero to max light level. However, in most HDR schemes the high and low sensitivity captures do not take place simultaneously in 

time. And since scene motion causes time variant pixel illumination the captured pixel values become non-linear and the combined HDR output 

suffers from image artifacts such as ghosting, color imbalance, color rings, loss of details in the ghost images, etc. The degree of such side-effects 

depends on the specific HDR capture method. Given that motion (distance travelled) is proportional to the time difference between the high and 

low sensitivity captures, we define a simple motion FOM as follows 

            
               

      
   

  

      
 

, T_COGhi and T_COGlo represent the mid-points (centers of gravity) of the high and low sensitivity captures, respectively. Tframe is the frame 

time (=1/frame-rate). 

Note this FOM also measures vulnerability to light flicker or blinking LED illumination which creates similar artifacts for similar reasons (time 

varying pixel illumination). 

For a given light sensitivity ratio R, and assuming Tlong and Tshort are always maximized (constrained by Tframe) for light sensitivity, the term 

∆T can be calculated for each HDR method: 

Skimming HDR: ∆T = Tframe/2-Tframe/R+Tframe/R/2  => FOM_motion=1-(1/2-1/R+1/2R) 

Staggered HDR: ∆T = Tframe/2     => FOM_motion=1/2 

Down-sampling HDR: ∆T = Tframe/2-Tframe/R+Tframe/R/2  => FOM_motion=1-(1/2-1/R+1/2R) 

Split-diode HDR: ∆T = 0     => FOM_motion=1 

FOM_motion is plotted as a function of R in fig.6. For skimming and down-sampling HDR the FOM_motion goes asymptotically towards 0.5 as 

R increases. This is because the exposure overlap becomes smaller and smaller relative to the total integration time (Tframe). 

The capture process of an ideal HDR sensor with unlimited DR has been simulated (fig.7). A dark object moving laterally 64 length units from 

left to right in front of a white background was used. The observation was 640 length units in the horizontal direction. The background brightness 

is about 6500 light units (aka DNs) and the dark object brightness is about 200 light units. The object width is 180 length units. A regular 10bit 

CIS would clip the background at 1023 light units which would give a relatively narrow transition from background to foreground of the dark 

object. Thus, the edge would look relatively sharp simply because of poor DR as in non-HDR CIS cameras. For an ideal HDR camera, however, 

with unlimited dynamic range, information content is higher but the edge transitions are wider and more visible in a linear response plot (dotted 

line in fig.7a and fig.7c). 

In skimming HDR, staggered HDR, and down-sampling HDR there is a time lapse between high and low sensitivity captures. When combined 

with scene motion, this can result in ghost effects as illustrated in fig.8a (simulated), and fig.8b-c. The high sensitivity capture is saturated and the 

low sensitivity capture has very low signal level. Thus, after HDR combination the output value is a grey tone with very poor S/N ratio. 

In the case of split-diode (fig.9) it is possible to keep both high sensitivity (LPD) and low sensitivity (SPD) captures 100% overlapping during 

photon integration. This way motion performance is similar to an ideal HDR sensor without ghosting. This is illustrated in fig.9 in a 1-D 

simulation plot and in the image capture examples using split-diode HDR sensor with 8x and 24x exposure ratios. 

6 Conclusions 

Overall conclusions from the comparison are listed in the below table. 

HDR method Min pixel size Pros Cons 

Skimming  
 

Any size Small die Motion, blinking LEDs, split FWC, FPN/PRNU around knee-
point (Vth variation, temp dependence) 

Staggered Any size Best DR Motion, blinking LEDs, die size (memory) 

Down sampling Any size Best DR, small die Motion, blinking LEDs, aliasing/Moiré, pixel resolution 

Split diode pixel ≥ ~3um Best motion+LED performance, 

small die 

Complex pixel, difficult to scale below ~3um 

Table-1: Comparison Summary 
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Fig. 5  Split-diode SNR vs Light intensity   Fig. 6  FOM_motion vs Hi/Lo sensitivity ratio 
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Fig. 8  Ghost effect in (a) skimming HDR (simulated), (b) staggered HDR (R=8x), and (c) down-sampling HDR (R=8x) 
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Fig. 9  Split-diode HDR simulation and captures with 8x and 24x exposure ratios 


