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Abstract

We present a 4 × 4 array of digital silicon photomultipliers (D-
SiPMs) capable of timestamping up to 48 photons per D-SiPM
and we show the advantage of generating multiple timestamps in
the context of positron emission tomography (PET). The D-SiPMs
have a pitch of 800 µm and comprise 416 pixels each; the timing
resolution achieved by the SiPMs is 179 ps FWHM, while each
pixel has a fill factor of up to 57 % and a single-photon timing
resolution of 114 ps.

Introduction

A Silicon photomultiplier (SiPM) is an alternative to photomul-
tiplying tubes (PMTs); it is often preferred to PMTs because of its
tolerance to magnetic fields, compactness, and low bias voltage.
At least two flavors exist for SiPMs: analog and digital. An analog
SiPM (A-SiPM) consists of an array of avalanche photodiodes
operating in Geiger mode, whose avalanche currents are summed
in one node as shown in Fig. 1 (a) [1]–[6]. In a digital SiPM
(D-SiPM), each photo-detecting cell or pixel consists of a single-
photon avalanche diode (SPAD), whereas specific circuit elements
are added to generate digital signals for each photon detection [7].
All of the SPAD outputs are combined together by means of a
digital OR; see Fig. 1 (b). In most D-SiPMs, the global output
is directly routed to an on-chip time-to-digital converter (TDC) to
reduce external components and temporal noise. The disadvantage
of D-SiPMs is the fact that only one optical photon or noise event
determines the response of the sensor. Alternatively, the approach
pursued in [8] can detect multiple photons and generate timestamps
for each of them, by implementing a on-pixel TDC as shown in Fig.
1 (c), thus providing more detailed statistical information of the
Gamma event in case of PET [8], [9]. However in this approach,
the fill factor is low due to the use of a TDC per pixel. To increase
fill factor while capturing multiple photon statistics, multiple pixels
can share one TDC. Fig. 1 (d) [12] shows a case in which a column
of SPADs shares one TDC, and the multiple timestamps can be
utilized in a statistical approach for multiple-photon detection [11].

Analysis of MD-SiPM for PET applications

In PET, one wants to detect the visible scintillation of a gamma
photon when it interacts with a scintillating crystal. As shown in
[10], [11], the most accurate time-of-interaction (TOI) is achieved
by accounting for not one but several visible photons resulting
from the scintillation. A multi-channel D-SiPM (MD-SiPM) was
proposed in [12], [13] to generate several such timestamps from
a scintillation event. The procedure for calculating the rth-order
statistics and the Cramer-Rao bound for the unbiased estimator
was demonstrated in [13]. In the analysis it was found that MD-
SiPMs are more robust that their counterparts to noise and other
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environmental conditions. Fig. 3 (a) and (b) show that the most
accurate TOI is always guaranteed irrespective of the dark count
rate (DCR) levels for a given illumination (assumed from a LYSO
scintillator).

Proposed SiPM architecture
Fig. 4 shows the proposed MD-SiPM array configuration. Each

SiPM in the array comprises 416 pixel and measures 800 × 780
µm2, adapted to the crystal dimensions. Each pixel measures 50 µm
× 30 µm; it generates a sharp pulse in correspondence to a photon
detection that is routed directly to a TDC. Adjacent pixels are
routed to independent TDCs by triples (every three pixel, the TDC
is reused); this approach prevents closely striking photons to be
missed, thereby reducing local saturation. There are 48 TDCs per
SiPM column, each operating simultaneously with a LSB duration
of 44 ps. The schematic of the pixel and the column-parallel
TDC, and the TDC timing diagram are shown in Fig. 5, 6 and
7, respectively.

Measurement Results
The sensor chip was fabricated on a 0.35 µm CMOS process,

the die size is 4.22 × 5.24 mm2 as shown in Fig. 8. Fig. 9
(a) plots the cumulative DCR for ’D15’ SiPM showing the DCR
distribution of 416 SPADs for several excess bias voltages and
temperatures. Masking pixels reduces both DCR and fill factor,
and thus PDE, defined as PDP ×FF , where PDP is the photon
detection probability and FF the fill factor. However, the reduction
is not linear because some pixels have very high DCR compared
to the median DCR value. This mechanism can be seen in Fig. 9
(b). The TDCs were fully characterized using an electrical input,
yielding a single-shot timing uncertainty of 60 ps (FWHM). Fig.
10 shows the TDC characterization. The timing resolution of each
SiPM was established optically in a TCSPC experiment. A single-
SPAD timing jitter (FWHM) of 114 ps and the timing jitter of
the entire SiPM (all 416 pixels) of 179 ps (FWHM) at 3.0 V
excess bias was measured with internal TDCs (Fig 11). Table I
summarizes the 4 × 4 MD-SiPM specifications in relation with
conventional SiPMs.

Coincident timing resolution prediction
To predict the coincident timing resolution (CTR) based on

the MD-SiPM architecture and measurement data shown in the
previous subsections, we carried out simulations, whereas the
timing jitter for a single photon of the detector is swept from
50 ps to 1 ns while the parameters of a LYSO scintillator are
the same as in the previous section. Figure 13 (a) shows the
relation between the timing information for a single photon and the
predicted FWHM of CTR with various detected photon numbers
at negligible DCR levels. According to the simulation results,
the predicted CTR for the MD-SiPMs with 179 ps single photon
timing jitter will be 260 ps and 183 ps for 500 and 1000 photons,
respectively, by utilizing multiple timestamps. Figure 13 (b) shows
the relation between the timing information for a single photon and
the predicted FWHM of CTR with various DCR values and 1000



detected photons. As shown in the results, CTR utilizing multiple
timestamps doesn’t degrade due to DCR while CTR utilizing a
single timestamp degrades when DCR reaches a certain threshold.
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Fig. 2. Method for calculating the probability distribution function of the
emission from a scintillator and DCR. For the emitted photons from a LYSO
scintillator, we can assume that detection occurs at time, θ. Time information of each
photon can be considered as statistically independent and identically distributed
(i.i.d.) following a probability density function (pdf), which has been modeled
as a double-exponential with rise time tr and decay time td [14] f(t|θ) =
(exp(− t−θ

td
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))/(td − tr) when t > θ, otherwise, f(t|θ) = 0. Upon

photon impingement, the SPAD jitter and an electrical jitter are convolved with the
scintillator-based pdf, femi(t|θ). The dark counts follow an exponential probability
distribution with event rate, λ, and reset time, tr , as f(t) = λ exp(−λ(t − tr))
when t > tr , otherwise, f(t) = 0. The pdf of the dark counts should also be
convolved with electrical jitter to be fdcr(t|tr). The detection cycle, or frame, starts
at the earliest before θ and it lasts a frame period, T. Thus the dark count pdf is
summed up for each reset time and then normalized. The scintillator-based pdf and
the dark count pdf are mixed with mixing ratio α : (1−α) where α is defined by
the percentage of photons emitted from scintillator, N, out of total detectable events,

N + λT , as, femi+dcr(t|θ) = αfemi(t|θ) + (1 − α)
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Fig. 11. The timing resolution of each SiPM was established optically in a TCSPC
experiment using a 250 mW, 405 nm laser source (ALDS GmBH) with 40 ps
pulse width and an external oscilloscope (LeCroy WaveMaster 6200). The TCSPC
experiment was repeated using the internal TDCs operating at a nominal LSB of
44 ps. This measurement is the sum in quadrature of the contributions from the
intrinsic jitter of the SPADs, TDCs, and sensor skews. (a) Single-photon FWHM
timing resolution for a single SPAD using a TDC and an external oscilloscope. (b)
Single-photon FWHM timing resolution for the complete SiPM at various excess
bias voltages.

Parameter This work [5] [6] [7] [8]

Chip

Technology 0.35 µm CMOS Custom Custom 0.18 µm CMOS 0.13 µm CMOS
# SiPMs 4 x 4 1 1 1 1

# SPAD / SiPM 416 4900 1600/400/100 6400 20480
SiPM Area 800µm!780µm 3.5mm!3.5mm 1mm!1mm 3.8mm!3.3mm 8mm!6.4mm

TDC

# TDCs / SiPM column 48

Analog SiPM 
No TDCs

Analog SiPM 
No TDCs

2 20480

# total TDC 192 2 20480
Power / TDC (mA) 0.57uA - -

TDC LSB 44 24ps 55ps

SPAD

DCR (Hz/µm2 @ 20℃ ) 39 @ Ve=3.0V 2.08 1.95/1.3/1.27 0.19 2 @ Ve=0.73V 
PDP at 420 nm (%) 30 @ Ve=4.0V - - ~60 22.5 @ Ve=1.7V 

Jitter (ps) 114 @ 405 nm - - - 140 @ 637 nm
FF (%) 57 (D15) - - 50 1

SiPM 

FF (%)
55.6 

36 30.8/61.5/78.5 50 1
39.1*  

Maximum PDE (%) 17 (D15) - 25/50/65 15 -
Total DCR (MHz) 10 (20℃, 20% mask) 0.75 0.6/0.8/1 ~2 (20C,5%mask) -

Cross-talk (%) < 10 - Included in PDE 1 -
Noisy pixels(%) < 30 - - 5 -

Power [mW] 330 (16 SiPMs) - - -- 550
Timing resolution for 

blue light  
(single photon) (ps)

179 @ Ve=3.0V 164 @ Ve=5.0V 200-300 > 350** 280

* Including TDC arrays and readout circuit assuming all SiPMs are D15 
** According authors’ measurement and prediction

Fig. 12. Specification summary and comparison table. All the measurements
are at room temperature unless otherwise specified. The major advantage of
our sensor over conventional SiPMs with comparable fill factor is the flexibility
and robustness given by the capability to establish multiple timestamps. This is
especially important, considering the extreme environments in which the sensor is
designed to operate.

00

200

400

600

800

1000

FW
H

M
 o

f C
TR

 (p
s)

0

100

200

350

400

450

FW
H

M
 o

f C
TR

 (p
s)200 photons

500 photons

1000 photons
2000 photons

Single timestamp

20M DCR
10M DCR

1, 5M, 10M DCR

(a) (b)

Multiple timestamps
Single timestamp

Multiple timestamps

1 DCR

FWHM of timing information for a single photon (ps)

300

250

150

50

200 400 600 800 1000 0
FWHM of timing information for a single photon (ps)

200 400 600 800 1000

Fig. 13. Simulated FWHM of coincidence timing resolution (CTR) with a single
timestamp and multiple timestamps: (a) for a range of detected photon numbers at
1 Hz DCR (which is almost negligible), (b) for a range of DCRs at 1000 detected
photons.


