
Architecture and Development of Next Generation Small BSI Pixels 
H. Tian, H. Komori, G. Agranov, J. Bai, J. Hynecek, C. Baron, H-W. Lee, X. Zhao, W. Gazeley, D. Tekleab, S. 

Nagaraja, W. Gao, P. Adepu, V. Rajasekaran, A. Rayankula, N. Li, U. Boettiger, M. Mooney, B. Vaartstra 
Aptina Imaging, 3080 North First Street, San Jose, CA 95134, htian@aptina.com 

 
Abstract 

This paper presents recent results from the development of our next generation small back side illuminated (BSI) 
pixels. According to the trend of pixel scaling [1], next generation small pixels will be at about 1.1um to 0.9um in 
size, achieving higher performance, and offering more advanced features than current pixels. Presented are the basic 
optical and electrical characteristics of the next generation 1.1um and 0.9um pixels. Pixel design concept and 
implementation including process and circuitry are discussed. The paper also presents a novel multiple-conversion-
gain architecture for small pixels 

1. BSI technology development 

BSI technology allows aggressive reduction of pixel size and more symmetrical pixel design. Small BSI pixels have 
gained popularity in mobile and digital still camera (DSC) applications. Today 1.4um BSI pixels and 1.1um BSI 
pixels are widely used in production, while designers of image sensors are actively working on the next generation 
of 1.1μm and 0.9um pixels. Pixel size reduction and pixel performance enhancement remain the most powerful 
driving force for new technologies and innovations in pixel development.  

Aptina continues to improve its BSI pixel technology. Figure 1 compares 
the pixel circuit schematic of the 1st generation 1.1um pixel and one of the 
2nd generation pixels. As we can reduce the transistor numbers in the 2nd 
generation pixel, it offers much larger photo-diode area and less shallow 
trench isolation (STI) area. This leads to large charge storage capacity and 
better quantum efficiency (QE). The photo-diode depth is also 
significantly increased which enables ~30% thicker BSI silicon. As a 
result both red QE and signal-to-noise ratio (SNR) are significantly better. 
Pixel implants are optimized to minimize the dark current and to reduce 
hot pixel count. A novel color filter (CFA) process is developed to 
maximize the QE and minimize the crosstalk. The optical stack on top of 
Silicon is carefully optimized, and new material for optical anti-reflection 
coating is adopted to minimize reflective loss from optical stack.  

The resulting 2nd generation of 1.1um pixel achieves SNR10 of 125lux. 
This is about 25lux better than for the 1st generation 1.1um pixel 
performance. Figure 2 shows the measured quantum efficiency. 
Compared to the 1st generation 1.1um pixel, peak QE is increased while 
crosstalk is significantly reduced across the spectrum. Full well capacity 
of the 2nd generation 1.1um pixel is about 35% higher, while dark current 
is reduced. Table 1 summarizes the key parameter improvement of the 
1.1um pixels. 

Table 1. Performance of 1.1um Pixels 
 Unit 1st generation 2nd generation 

Peak QE % 65 72 
SNR10 lux 150 125 

Full well capacity e- 3700 5000 
Dark current @ 60C e-/s 20 9 

Dynamic range dB 66 69 



2. 0.9um pixel development 

The expectation for sub-micron pixels is to perform as well 
as, if not better than, current generation 1.1um pixels. 
Without new technology, the reduction of pixel size 
naturally leads to pixel performance degradation. Figure 3 
illustrates that two key parameters, SNR and well capacity, 
degrade rather rapidly with shrinking pixel size if no other 
performance improvements are made. New technologies are 
required to fight this degradation trend, in order to 
successfully develop the sub-micron pixels. 

Quantum efficiency (QE) and spectral crosstalk are typically 
among the most important factors limiting SNR 
performance. As pixel size shrinks from 1.1um down to 
0.9um, crosstalk shoots up dramatically in a conventional 
CFA system [2]. This is attributed to the diffraction effect: 
the incident light through a specific color filter is no longer confined within its associated photodiode. At Aptina a 
novel CFA process (Figure 4) has been developed to significantly reduce the crosstalk. The grid material is designed 
to provide additional focusing power 
when interacting with color filter. 
Other improvements of the pixel 
optical stack include further 
optimization of anti-reflective coating, 
fine tuning the optical stack height, 
and refining microlens design. We 
also applied tighter design rules to 
maintain the photodiode fill factor, 
and enhanced the silicon process to 
increase pixel quantum efficiency and 
reduce the electrical isolation region between pixels. Figure 5 presents simulated spectral QE characteristics for a 
0.9um pixel, using 3D and FDTD models. With this new CFA process and photodiode enhancement, the expected 
0.9um pixel spectral response approaches a similar level of the 1.1um pixel. This brings a 0.9um pixel performance 
close to the ideal scaling curve shown in Figure 3. To further improve SNR10 performance to reach the customer 



acceptance threshold, Aptina has also developed our Clarity+TM technology. It introduces panchromatic pixels into 
50% of the sensor array, and thus reduces the light level required for SNR10 to about half of what’s achieved 
without this technology. 

One of the big challenges for 0.9um pixel development is pixel capacity. For a 0.9um pixel to reach the same well 
capacity as a 1.1um pixel, the charge storage capability of the photodiode needs to be maximized. This paper 
describes several approaches to increase pinned photodiode capacity. While tightening design rules and migrating to 
a more aggressive process node is an obvious trend in small pixel development, big improvement in pixel capacity 
can come from charge transfer gate (TX) design and engineering of photodiode (PD) with well optimized potential 
profile. As shown in Figure 6, the optimized design achieves a much wider peak potential region along photodiode 
width. This leads to higher electric field near the photodiode surface and thus higher full well capacity. Transfer gate 
in a BSI pixel serves as the transferring device during readout and provides anti-blooming path for the pixel. In a 
traditional pixel TX is made to be sufficiently 
long, in order to avoid punch-through, while 
achieving lag-free transfer and low dark current. 
Aptina developed a device to significantly shorten 
the TX length, while providing a better controlled 
anti-blooming path. The device is lag-free, and 
has built in potential to suppress the dark current 
and hot pixels associated with TX channel. The 
process integration of the new TX device is 
optimized to provide good misalignment tolerance 
and hence excellent manufacturability. As a result 
of these combined techniques, pixel capacity of 
0.9um pixels can be brought to the level of 
current generation of 1.1um pixel. Figure 7 
presents the image taken from 0.6Mpix pixel 
array with 0.9um pixel.   

3. Multiple-conversion-gain pixel 

As pixel size shrinks, it’s critical to introduce more compelling features for better camera user experience. This 
paper presents a new pixel architecture, namely a multi-conversion-gain pixel which can greatly benefit the next 
generation of small pixels.  It enables some highly desirable features for the small pixels such as extended dynamic 
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Figure 8. Structural view of pixel architecture

a - high conversion gain mode; 
b - low conversion gain mode allowing pixel binning and high full well;
c – intermediate conversion gain mode 

Figure 7. Image from 930 x 690 pixel array with 0.9um pixel



range, pixel level binning, adjustable conversion gain of the floating diffusion, and low readout noise. Figure 8 
presents the structural view of this pixel architecture. Two floating diffusion nodes of neighboring pairs of pixels in 
traditional 1x2 common element pixel architecture (CEPA) can be combined into 1x4 CEPA by using additional 
switches between those pairs of pixels. When working in 1x2 CEPA mode (Fig 8a), high conversion gain and 
correspondingly low readout noise floor can be realized, leading to high performance at low light. When switched to 
1x4 CEPA mode (Fig 8b), the pixel realizes high charge handling capacity and the ability to bin charge on the FD. 
The readout noise does not increase as much as the conversion gain reduction would suggest, thanks to the use of a 
distributed Source Follower (SF). This pixel structure allows several conversion gain choices for the FD simply by 
changing the mode of pixel 
operation (Fig 8c). 

Symmetry is very important in 
the implementation of multi-
conversion-gain pixel. Circuitry 
and pixel layout are carefully 
designed on 1.1um pixel. The 
measured 1x2 mode conversion 
gain is well above 200uV/e-, 
leading to excellent low light 
noise performance. At 1x4 mode 
the conversion is brought down 
to about 60uV/e-, sufficient to 
handle large charge capacity 
from multiple photo-diode. This 
is particularly useful for pixel 
binning, which improves SNR. Figure 9 shows the measured noise level and SNR performance of the various 
conversion gain modes. The HCG mode achieved very low noise floor of 1.6e, while LCG binning mode 
significantly boosted SNR by simultaneously accumulating and reading out charge from two photodiodes of the 
same color.  

4. Conclusion 

The paper summarizes recent results of photoelectrical characterization for our next generation of 1.1um pixel and 
0.9um pixel. We consider quantum efficiency, crosstalk, full well capacity, dark current, readout noise, and major 
image quality. Through continuous technology innovation and development, these next generation pixels realized 
excellent performance. A multiple-conversion-gain pixel architecture and measured 1.1um pixel data with this 
architecture are also presented. The pixel achieved very low noise floor, while enabling pixel binning feature.  
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Figure 9. Measured noise level (left) and SNR (right) of the 1.1um multi-conversion-gain pixel


