4.5 μm Pixel Pitch 154 ke- Full Well Capacity CMOS Image Sensor

Koichi Mizobuchi1, Satoru Adachi1, Nana Akahane1, Hirokazu Sawada1, Katsumi Ohta1, Hiromichi Oshikubo1 and Shigetoshi Sugawa2

1DISP Development, Texas Instruments Japan, 2350 Kihara, Miho-mura, Inashiki-gun, Ibaraki, 300-0496, Japan
Phone: +81-29-880-4066 Fax:+81-29-880-4156
2Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki, Aza-Aoba, Aoba-ku, Sendai, 980-8579, Japan
Phone:+81-22-795-4833 Fax:+81-22-795-4834
E-mail: {mizo, chiro, nana, sawada, ohta, hiromichi-oshikubo}@ti.com, sugawa@fff.niche.tohoku.ac.jp

Abstract
A 1/4 inch SVGA format 4.5 μm pixel pitch wide dynamic range (WDR) CMOS image sensor with resistance to high temperatures has been developed. The pixel has been linearly shrunk to 4.5 μm pitch keeping the same 0.18 μm 2-poly-silicon 3-metal process technology node and the same 5-transistor 1-photodiode 1-capacitor schematic. The inorganic cap layer to suppress the degradation of the spectra response of the on-chip micro lens (OCML) and the color filter at high temperatures has been also employed. Fourier transform infrared spectrophotometer (FTIR) has clarified the chemical aspects of the thermal resistance improvement. The image sensing performance is compared with the 1/3 inch SVGA format sensor with 5.6 μm pixel pitch. A low dark temporal noise of 2.3 e-rms is obtained by the optimization of the readout circuitry (PGA gain: ×2). The full well capacity (FWC) for 4.5 μm pixel pitch is 154 ke- and the dynamic range is extended to 96.5 dB with only -3.5 dB drop from 5.6 μm pixel pitch. The FWC is about five times as much as the conventional CMOS image sensor at the same 4.5 μm pixel pitch. The image sample of the 1/4 inch SVGA format CMOS image shows no significant degradation in SNR even in dark portion and bright portion.

Introduction
The CMOS image sensor with lateral overflow integration capacitor (LOFIC) enables the full well capacity (FWC) not to be limited by photodiode (PD) or the floating diffusion (FD) FWC. Fig.1 shows the pixel pitch dependency of the FWC for the CMOS image sensor with LOFIC, as compared with conventional CMOS image sensors reported in the past [1-5]. The conventional CMOS image sensors show linear decrease of the FWC with the pixel pitch less than 5 μm. However the FWC does not increase as the pixel pitch goes over 5 μm. This is because the FWCs, for both cases, are dominated by the PD FWC and the FD FWC, respectively. The CMOS image sensor with LOFIC has previously been shrunk to 5.6 μm pixel pitch and demonstrated 237,000 e- FWC, 2.4 e-rms temporal noise performance, and 100 dB dynamic range (DR) [6-8]. However, the pixel shrink-ability is still concerned because the pixel schematic includes five transistors, one photodiode and one capacitor. Security camera applications require 1/3 or 1/4 inch optical size and resolutions with SVGA, SXGA and full-HD format. The pixel is required to be shrunk to 2.75 μm pitch and beyond in the future. In order to break through this issue, various approaches including process technology node, pixel structure and pixel circuit changes are taken into consideration. In this paper, the pixel has been linearly shrunk to 4.5 μm pitch keeping the same process technology node and the same schematic, a 1/4 inch SVGA format CMOS image sensor has been fabricated and its image quality has been evaluated. In order to assure the temperature resistance up to 85 °C, the inorganic cap layer onto organic micro lens in the previous generation is taken over. The chemistry of the prevention of the thermal decomposition is analyzed in more detail.

![Fig.1 Pixel pitch vs full well capacity for LOFIC and conventional CMOS image sensors.](image-url)
Pixel Schematic and Block Diagram

Fig. 2 shows the pixel schematic and the operation diagram. The pixel schematic consists of a fully depleted photodiode (PD), a floating diffusion to convert the charge to the voltage (FD), a charge transfer switch (M1), an lateral over-flow integration capacitor (LOFIC), a switch between the FD and the LOFIC (M3), a reset switch (M2), a pixel source follower (M4) and a pixel select switch (M5). The basic concept in this pixel circuit is to use the switch M1 for a suitable overflow path of saturated photoelectrons and integrate overflowed photoelectrons in the FD and the LOFIC during a charge integration period.

The non-saturated photoelectrons are transferred from the PD to the FD and converted to the voltage as a high sensitivity low light signal (S1). The dynamic range is extended by fully utilizing the photoelectrons overflowed from the PD, integrated at the FD+LOFIC and converted to the voltage as a bright light signal S2. In the CDS operation, the only N2 in the next frame (defined as N2’) can be removed by the subtraction of (S2+N2)-N2’ in the same horizontal blanking period.

Fig. 3 shows the block diagram and the packaged chip micrograph of the 1/4 inch SVGA format 4.5 μm pixel pitch wide dynamic range (WDR) CMOS image sensor. In the readout circuitry, the kT/C noise at the analog memory capacitance and the horizontal line capacitance are kept as small as possible. A continuous capacitive feedback programmable gain amplifier (PGA) with ×1, 2, 4 or 8 gain is introduced in the sensor to eliminate kT/C noise in contrast to the switched capacitor PGA having kT/C noise as a primary contributor. The noise calculation of the readout circuitry results in 1.7 e’rms (PGA gain: ×2). The sensor chips are fabricated through 0.18 μm 2-poly-silicon 3-metal process with the very low dark current FEOL and BEOL implementation [7, 8]. The LOFIC is formed by a stacked poly-silicones structure. RGB Bayer color filters and on-chip micro lenses with the temperature resistant inorganic cap layer are also formed.

Fig. 2 Pixel schematic (a) and operation diagram (b) for CMOS image sensor with LOFIC.

Fig. 3 Block diagram (a) and packaged chip (b) of 1/4 inch SVGA CMOS image sensor with LOFIC.
Thermal Resistant On-chip Micro Lens

In order to keep a good thermal resistance, the inorganic cap layer onto on-chip micro lens (OCML) is introduced. The inorganic cap layer is found to prevent the OCML and the color filter from the oxidative decomposition [7]. In this paper, chemical aspects of the thermal decomposition of the OCML with/without the inorganic cap layer have been more deeply analyzed by a Fourier transform infrared spectrophotometer (FTIR). Fig.4 shows the structures of the specimens of the OCML and the color filter with/without the inorganic cap layer. The specimen is set in the FTIR chamber where the temperature is elevated from room temperature to 300 °C, the oxygen concentration is varied from 0 to 20 % and the moisture (H₂O:1 %) is also added assuming actual atmosphere.

Fig.5 (a) and (b) show CO₂ absorbance measured by FTIR as the result of the thermal decomposition of the OCML with conventional structure and the inorganic cap layer.

With no oxygen ambient, the thermal decomposition of the conventional OCML is observed from 224 °C. By increasing oxygen concentration, 100 ppm, 1000 ppm and 20 %, the thermal decomposition starts at lower temperature, 208 °C, 188 °C and 156 °C respectively. This is because the thermal decomposition takes place with the oxidation of the OCML surface. By adding the moisture (H₂O:1 %) to 20 % O₂, the thermal decomposition starts at the same temperature (156 °C), however the reaction rate is higher. On the contrary, the inorganic cap layer onto the OCML tends to suppress the oxidative decomposition. The thermal decomposition temperature is higher, 224 °C, 208 °C and 184 °C for 100 ppm, 1000 ppm and 20 % O₂ respectively. Even in case of adding the moisture (H₂O:1 %) to 20 % O₂, the thermal decomposition temperature is 180 °C with +24 °C improvement. The inorganic cap layer is capable of preventing the OCML and the color filter from the oxidative decomposition.

Image Sensing Performance

Fig. 6 shows the photo-electric conversion characteristics of the sensor. A good linearity is found in both low light and bright light signals (S1 and S2). The sensitivity of S1 signal is comparable to the conventional four transistors type CMOS image sensor.

Table 1 summarizes the image sensing performance of the 1/4 inch SVGA format WDR CMOS image sensor, as compared with and the 1/3 inch SVGA format sensor. A low dark temporal noise of 2.3 e⁻rms is obtained by the optimization of the readout circuitry (PGA gain: ×2). The FWC for 4.5 μm pixel pitch is 154 ke⁻ and the DR is extended to 96.5 dB with only -3.5 dB drop from 5.6 μm pixel pitch. As it is already shown in Fig.1, the FWC is about five times as much as the conventional CMOS image sensor at the same 4.5 μm pixel pitch.
Fig.7 shows image samples captured by both the 1/4 inch and the 1/3 inch SVGA format WDR CMOS image sensors with LOFIC. No significant degradation in SNR is observed even in dark portion and bright portion. The fabricated sensor chips are expected to fulfill promising performance capturing dark and bright mixed scenes required to security camera applications.

Conclusion
A 1/4 inch SVGA format 4.5 \(\mu \)m pixel pitch wide dynamic range (WDR) CMOS image sensor with resistance to high temperatures has been developed. The pixel has been linearly shrunk keeping the same process technology node and the same schematic. The inorganic cap layer to suppress the degradation of the spectra response of the on-chip micro lens (OCML) and the color filter at high temperatures has been also employed. The image sensing performance is compared with the 1/3 inch SVGA format sensor with 5.6 \(\mu \)m pixel pitch. A low dark temporal noise of 2.3 e\(^{-}\) rms is obtained by the optimization of the readout circuitry (PGA gain: \(\times 2 \)). The full well capacity (FWC) for 4.5 \(\mu \)m pixel pitch is 154 Ke\(^{-}\) and the dynamic range is extended to 96.5 dB with only -3.5 dB drop from 5.6 \(\mu \)m pixel pitch. The FWC is about five times as much as the conventional CMOS image sensor at the same 4.5 \(\mu \)m pixel pitch. The image sample of the 1/4 inch SVGA format CMOS image shows no significant degradation in SNR even in dark portion and bright portion.

References

| Table 1 Image sensing performance comparison between 1/4 inch (a) and 1/3 inch (b) WDR CMOS image sensors |
|--|-----------------|-----------------|
| Optical format | This work | Previous work |
| Effective number of pixels | 800 x 600 | 800 x 600 |
| Pixel pitch | 4.5 \(\mu \)m | 5.6 \(\mu \)m |
| Process technology | 0.18\(\mu \)m 2P3M CMOS | 0.18\(\mu \)m 2P3M CMOS |
| Operation voltage | 5 V | 5 V |
| Frame rate | 60 fps | 60 fps |
| Differential amplifier gain | \(\times 1, 2, 4, 8 \) | \(\times 1, 2, 4, 8 \) |
| Temporal noise (Gain=x2) | 0.19 mVrms (2.3 e\(^{-}\)) | 0.20 mVrms (2.4 e\(^{-}\)) |
| Saturation of S1 (Gain=x2) | 770 mV | 990 mV |
| Saturation of S2 (Gain=x1) | 750 mV | 870 mV |
| Full well capacity | 154 Ke\(^{-}\) | 237 Ke\(^{-}\) |
| Dynamic range | 96.5 dB | 100 dB |

![Image samples captured by 1/4 inch (a) and 1/3 inch (b) WDR CMOS image sensors](image1)

(a)

![Image samples captured by 1/4 inch (a) and 1/3 inch (b) WDR CMOS image sensors](image2)

(b)