A TOF range image sensor with an ambient light charge drain and small duty-cycle light pulse

Tomonari Sawada \(^1\), Shoji Kawahito \(^1\), Masakatsu Nakayama \(^1\), Kana Ito \(^1\), Izhal Abdul Halin \(^1\), Mitsuru Homma \(^2\), Takeo Ushinaga \(^2\) and Yasunari Maeda \(^3\)

\(^1\)Shizuoka University, 3–5–1, Johoku, Hamamatsu, Shizuoka, 432–8011 JAPAN
\(^2\) Sharp Corporation, Tenri, Nara, JAPAN
\(^3\) Suzuki Motor Corporation, Hamamatsu, Shizuoka, JAPAN

Abstract—This paper presents a TOF range image sensor with an ambient light charge drain and small duty-cycle light pulse. Under the same optical energy consumption of light source, the charge drain and small duty-cycle for the gate control pulse more effectively reduce the influence of ambient light than that of using a 50% duty pulse or a sinusoidal modulation. The effect of ambient light charge drain is analyzed and confirmed with an experiment. A prototype CMOS range image sensor with the spatial resolution of 336\(\times\)252 pixels and the pixel size of 15\(\times\)15\(\mu\)m\(^2\) is implemented in a 0.35\(\mu\)m 2-ploy 3-metal standard CMOS process. The range resolution of 5.0mm is achieved with a light pulse width of 25ns at 30frames/s.

Index Terms—Time-of-Flight, TOF, range image sensor, ambient light charge drain

I. INTRODUCTION

3-D imaging systems can be used in a variety of applications such as automobile, robot vision systems, security and so on. Many kinds of range finding methods have been proposed for 3-D measurements. TOF range imaging is one of 3-D image capture methods. The range \(L\) is determined by sensing the roundtrip time of flight of light and is given by \(L = cT_\text{d}/2\), where \(c = 3 \times 10^8 \text{ m/sec}\) is the speed of light and \(T_\text{d}\) is the roundtrip time of flight of light. Recently, many TOF range image sensors have been reported \([1]\), \([2]\), \([3]\), \([4]\). A method of the TOF range imaging uses a sinusoidal modulated light pulse \([1]\). In this method, the pixel driving frequency must be increased for achieving higher range resolution. This method uses a range calculation method with reduced influence of ambient light. However, there is no effect for reducing the ambient light charge itself. This paper presents a TOF range image sensor with an ambient light charge drain and small duty-cycle light pulse. A small duty-cycle light pulse is effective for increasing the range resolution without increasing the pixel operation frequency, while suppressing the influence of ambient light by draining the ambient light charge during the off-state of the LED.

II. SENSOR DESIGN

A. Pixel structure

Fig. 1 shows the pixel layout and the cross-sectional views of \(x-x'\) and \(y-y'\) directions. A pixel structure of the sensor employs single layer polysilicon gates on relatively thick oxide. Using these single layer polysilicon gates, the sensor achieves high-speed charge transfer like a CCD which is essential for TOF range imaging and can divide signal charge into two floating diffusions (FD) depending on delay time (\(x-x'\) direction). In the photodetector region of the pixel, high-speed photo response is achieved by using a lightly-doped p-epitaxial layer on a highly doped p-type substrate. A single additional mask only is used to create an n-type buried layer which prevents the Si-SiO\(_2\) interface traps from causing charge transfer delay. A pixel structure of the sensor has a function of ambient light induced charge reduction (\(y-y'\) direction). Compared with our previous design \([5]\), the potential profile near the \(n^+\) drain region is changed and size of TX\(_{CD}\) gate is enlarged to improve performance of the ambient light charge draining. The potential peak point of the n-type buried layer is changed to deeper side in the substrate for reducing the effect of Si-SiO\(_2\) interface traps.

B. Timing diagram

Fig. 2 shows the timing diagram of the pixel with a small duty-ratio light pulse. The duty-ratio \(R_D\) is defined as \(R_D = T_P/T_C\), where \(T_P\) is the gate pulse width and \(T_C\) is the cycle. Using TX\(_1\), TX\(_2\) and TX\(_{CD}\) gates, charge in phases A and B due to mostly signal light pulse is transferred to two FD nodes and charge in phase C due to mostly ambient light...
The operation in phase C is for ambient light charge drain. Under the same optical energy consumption of light source, the operation in phase C in this structure more effectively reduces the influence of ambient light than that of using a 50% duty pulse or a sinusoidal modulation. Furthermore, the instantaneous power of the LED can be increased to a value higher than the maximum ratings of the DC operation of the LED if a small duty-cycle pulse is used. This leads to an economical use of the LED.

III. INFLUENCE OF AMBIENT LIGHT TO RANGE RESOLUTION

A. Range Estimation

Fig. 3 shows the pixel potential profile. The charges generated in phases A, B and C are transferred to FD1, FD2, and drains, respectively. The same procedure is repeated for M times during accumulation time, then the TOF pixel output voltages \(V_{OUT1} \) and \(V_{OUT2} \) are given by

\[
V_{OUT1} = V_1 + V_{A1} = \frac{M I_{ph}(T_0 - T_d)}{C_1} + V_{A1} \tag{1}
\]

and

\[
V_{OUT2} = V_2 + V_{A2} = \frac{M I_{ph} T_d}{C_2} + V_{A2} \tag{2}
\]

where \(I_{ph} \) is the photocurrent induced by the received light pulse, \(T_0 \) is the light pulse width, \(V_{A1} \) and \(V_{A2} \) are the voltages of ambient light components in phases A and B, and \(C_1 \) and \(C_2 \) are the capacitances of FD1 and FD2, respectively. The ambient light components are obtained by measuring \(V_{OUT1} \) and \(V_{OUT2} \) without the signal light pulse. From Eq.(1) and Eq.(2), \(T_d \) is given by

\[
T_d = \frac{V_{OUT2} - V_{A2}}{V_{OUT1} - V_{A1} + V_{OUT2} - V_{A2}} T_0 = \frac{V_2}{V_1 + V_2} T_0 \tag{3}
\]

if \(C_1 = C_2 \). The range from the sensor to the object, \(L \), is given by

\[
L = \frac{1}{2} c T_d = \frac{1}{2} c \frac{V_2}{V_1 + V_2} T_0 \tag{4}
\]

Fig. 3. Pixel Cross Sections and Potential profiles

B. Range Resolution order Ambient illumination

Range resolution could be estimated by considering the variance of Eq.(4) which is written as

\[
\sigma_L^2 = \left(\frac{\partial L}{\partial V_2} \right)^2 \sigma_{V_2}^2 + \left(\frac{\partial L}{\partial V_1} \right)^2 \sigma_{V_1}^2 + 2 \left(\frac{\partial L}{\partial V_1} \right) \left(\frac{\partial L}{\partial V_2} \right) \sigma_{V_1 V_2} \tag{5}
\]

where \(V_{12} \) is the sum of \(V_1 \) and \(V_2 \). \(\sigma_{V_1}^2 \) and \(\sigma_{V_2}^2 \) are the variance of \(V_1 \) and \(V_2 \), respectively. The covariance \(\sigma_{V_1 V_2} \) equals to \(\sigma_{V_1 V_2}^2 \), since \(V_1 \) and \(V_2 \) are not correlated. From Eq.(4) and Eq.(5), the range resolution is given by

\[
\sigma_L^2 = \left(\frac{c T_0}{2} \right)^2 \left(\frac{V_2}{V_{12}} \right)^2 \left(\frac{V_{12} - V_2}{V_{12}} \right) \left(\sigma_{V_2}^2 + \sigma_{V_1}^2 \right) \tag{6}
\]

Noise sources such as fixed pattern noise (FPN), thermal noise, dark current and photon shot noise (PSN) degrades range resolution. The PSN caused by ambient light illumination is unavoidably added during signal accumulation and remain in the signal components even if ambient light cancellation is done. Circuit readout noise, \(N_R \), from the output source follower, column FPN canceling circuits and output buffer amplifiers are also superimposed on the signal. This noise component is doubled to take the doubling effect of readout
noise power into account if two neighboring frame readouts are taken for subtracting ambient light generated electrons. Ambient light generated electrons or simply ambient noise, N_A is constant. The electrons which are not transferred to drain in phase C is given by $(1 - R_A)(1 - 2R_D)N_A$, where R_A is the ratio of ambient light charge drained and that transferred to FD1 at the next phase A. By considering these noise sources and their amounts, $\sigma_{V_{12}}^2/N_{V_{12}}$ and $\sigma_{N_{12}}^2/N_{N_{12}}$ are given by

$$\left(\frac{\sigma_{V_{12}}}{V_{12}}\right)^2 = \left(\frac{\sigma_{N_{12}}}{N_{12}}\right)^2 = \frac{N_{12} + K_C(R_D N_A + N_R^d)}{N_{12}^2}$$ \hspace{1cm} (7)$$

and

$$\left(\frac{\sigma_{V_{12}}}{V_{12}}\right)^2 = \left(\frac{\sigma_{N_{12}}}{N_{12}}\right)^2 = \frac{N_{12} + K_C[(2R_D + (1 - R_A)(1 - 2R_D))N_A + 2N_R^d]}{N_{12}^2}$$ \hspace{1cm} (8)$$

respectively, where N_1, and N_2 are the numbers of electrons in FD1, and FD2, respectively, $N_{12} = N_1 + N_2$, and K_C is a factor of the noise increase due to ambient light canceling. If ambient light canceling is used, $K_C = 2$, and otherwise $K_C = 1$. By substituting Eq.(7) and Eq.(8) into Eq.(5), the standard deviation of range, or range resolution is expressed as

$$\sigma_L = \frac{1}{2}cT_0 \left(\frac{1}{N_{12}}\right)^2 \sqrt{\frac{N_{12} + K_C R_D N_A + K_C N_R^d}{N_{12}^2}}$$

$$+ \frac{N_{12}^2}{N_{12} + K_C R_D N_A + K_C N_R^d} \left[\frac{N_{12} + 2N_R^d}{N_{12}^2} - \frac{2N_R^d}{N_{12}(N_2 + K_C R_D N_A + K_C N_R^d)}\right]$$ \hspace{1cm} (9)$$

For the worst case where $N_{12} = N_{12}/2$, Eq.(9) reduces to

$$\sigma_L = \frac{1}{4}cT_0 \frac{1}{\sqrt{N_{12}}} \times$$

$$\sqrt{1 + \frac{(2R_D + (1 - R_A)(1 - 2R_D))K_C N_A + 2K_C N_R^d}{N_{12}^2}}$$ \hspace{1cm} (10)$$

If N_A is small, the range resolution depends mainly on the light pulse width and the number of accumulated signal electrons, and is simplified to

$$\sigma_L \approx \frac{1}{4}cT_0 \frac{1}{\sqrt{N_{12}}} \sqrt{1 + \frac{2K_C N_R^d}{N_{12}}}$$ \hspace{1cm} (11)$$

IV. MEASUREMENT RESULTS

A prototype CMOS range image sensor with the spatial resolution of 336×252 pixels and the pixel size of 15×15μm2 is implemented in a 0.35μm 2-ploy 3-metal standard CMOS process and tested using an array of near-infrared LEDs with the wavelength of 870nm.

A. Sensitivity to the Delay time T_d

Fig.5 shows the pixel outputs of V_1 and V_2, the difference $V_1 - V_2$, and the sum $V_1 + V_2$, as a function of delay time T_d. The difference of the two sensor outputs varies linearly with respect to T_d, but the sum $V_1 + V_2$, is almost unchanged in phase A and B. In phase C, the outputs of V_1 and V_2 are reduced, showing the effectiveness of ambient light charge draining.

B. Efficiency for Ambient light charge draining

To measurement the efficiency for ambient light charge draining, the TOF sensor is illuminated by an array of near-infrared LEDs with the wavelength of 870nm as a DC source of ambient light. In the total ambient light electronons of N_A, $R_A(1 - 2R_D)N_A$ is drained, the residual electronons are transferred to FD1. Therefore, the output voltages are given by

$$V_{A1} = G_C[(1 - R_A)(1 - 2R_D)N_A + R_D N_A]$$ \hspace{1cm} (12)$$

$$V_{A2} = G_C R_D N_A$$ \hspace{1cm} (13)$$

where G_C is the conversion gain of pixel. From Eq.(12) and Eq.(13), R_A is expressed as

$$R_A = 1 - \frac{V_{A1} - V_{A2}}{(1 - 2R_D)V_{A2}}$$ \hspace{1cm} (14)$$

In the implemented TOF sensor, R_A is measured to be 89.7%.
C. Range Resolution

Figs. 6 and 7 show the results of range resolution versus signal intensity under no ambient light. The light pulse delay was set such that \(V_1 \) equals to \(V_2 \) in order to measure the worst case resolution. The solid line is the calculated values using Eq.(11) where \(N_B \) is 75 electrons. The minimum range resolution at 30frames/sec and the light pulse width of 25ns is 5.0mm. The range resolution is improved by a factor of \(\sqrt{N} \) for averaging of \(N \) times. The resolution at 3frames/sec, which corresponds to the averaging of 10times is 1.7mm.

Fig. 8 shows the result of range resolution versus signal intensity measured at 30frames/sec. In the curve measured under ambient light, ambient light canceling is carried out. The ambient light components are measured without signal light, and averaged 100 times to reduce the noise. The solid line are the calculated values using Eq.(10) and Eq.(11). The light pulse delay is set to measure the worst case resolution. The range resolution at high signal intensity approximates to the range resolution under no ambient light. The range resolution at low signal intensity is deteriorated by the influence of ambient light.

V. CONCLUSION

In this paper, the design, analysis of the influence of ambient light to range resolution and implementation of a TOF range image sensor with an ambient light charge drain and small duty-cycle light pulse have been presented. The theoretical model of the range resolution under the influence of ambient light relativity well agrees with the experimental results.

ACKNOWLEDGMENT

This work was performed by a collaborative project between Shizuoka University, Sharp Corporation and Suzuki Motor Corporation under the support of the Knowledge Cluster Initiative of Ministry of Education, Culture, Sports, Science and Technology, and the 21st Century COE Program on “Nanovision Science”. The authors wish to thank Dr. T. Watanabe and Mr. K. Nagase for helpful discussions.

REFERENCES