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Abstract— Reset noise sets a fundamental detection limit on
CMOS image sensors. Therefore, understanding the sources of
reset noise and how to reduce them is essential for the design of
low noise image sensors. In order to analyze reset moise suppres-
sion circuitry in CMOS image sensors we present a method for
solving non-linear time varying stochastic differential equations
with white noise inputs based on It6 calculus. This methodology
can be used to obtain both closed form and numerical solutions to
the cross correlation matrix for non-linear time varying stochastic
systems. When a closed form solution is not available, this
methodology can numerically calculate the transient noise power
of a given circuit much faster than Monte Carlo based techniques.
Therefore, this method can greatly speedup the noise optimization
process during CMOS image sensor design.

We analyze a reset noise suppression technique based on a
3T NMOS pixel. This technique reduces reset noise by using
precise measurement and feedback control of the pixel voltage.
We call this reset noise suppression technique “bandwidth control
noise suppression.” It uses a feedback loop to reduce reset noise
by directly attenuating the in-band thermal noise of the reset
transistor. If the noise bandwidth of the reset transistor is less
than the bandwidth of the feedback loop, then the noise stored on
the pixel after reset will be less than k7'c. We present theoretical
results for the noise suppression capability of this circuit, and
compare them with both a numerical solution of the stochastic
differential equations and a Monte Carlo simulation of the circuit.

I. INTRODUCTION

ESET noise sets a fundamental detection limit on CMOS

image sensors. Therefore, understanding the sources of
reset noise and how to reduce them is essential for the design
of low noise image sensors. Recently many techniques have
been presented for suppressing reset noise in CMOS image
sensors [1]-[8]. Most of these methods rely on time varying
and/or non-linear circuits that are difficult to analyze with
traditional linear time invariant noise analysis techniques. The
purpose of this paper is to present a theoretical framework
for analyzing reset noise in time varying and/or non-linear
systems, and use this framework to analyze a 3T NMOS pixel
with reset noise suppression.

Currently most CMOS image sensor designers use SPICE
based transient noise analysis to estimate the reset noise
of their circuits. Typically these SPICE based solutions use
Monte Carlo simulation to perform transient noise analysis.
Monte Carlo simulation is computationally intensive, and
therefore better suited to verification than to design. The
noise analysis method presented in this paper is not based on
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Monte Carlo simulation. We present a method for solving time
varying and/or non-linear stochastic differential equations
with white noise inputs based on It6 calculus [9], [10]. This
methodology can be used to obtain both closed form and
numerical solutions to the cross correlation matrix for time
varying and/or non-linear stochastic systems. When a closed
form solution is not available, this methodology can numer-
ically calculate the transient noise power of a given circuit
much faster than Monte Carlo based techniques. Therefore,
this method can greatly speedup the noise optimization process
during CMOS image sensor design.

This paper is organized as follows: the next Section provides
the notation and analysis framework for the remainder of the
paper. The following Section presents a theoretical basis for
our noise analysis, and describes a specific noise reduction
method and circuit implementation. In Section IV we present
simulation results for the circuit implementation presented in
Section III and compare these results with theory. The final
Section provides summary conclusions.

II. RESET NOISE IN CAPACITIVE SENSORS

In this section we define the terms and assumptions for the
remainder of the paper. We also discuss the voltage charge
relationship for capacitive reset noise.

We assume that the thermal and shot noise sources that
cause capacitive reset noise can be modeled as Gaussian white
noise processes. We use upper case letters to denote random
variables, and a random variable indexed by time denotes
a random process, i.e. X (t). A specific value of a random
variable is denoted by a lower case letier, i.e. x represents a
specific value of the random variable X . The cross correlation
function of two random processes at any time ¢ is defined as

oky(t) = EX(@)Y(®)] - EIX@®IEY(®), D

where E[XY] = ffooo 2y f(z,y)dz, and f(z,y) is the joint
distribution of X and Y. If either X (t) or Y (¢) is a zero mean
process then equation 1 simplifies to

oky (t) = EIX ()Y (1)]. @)
The variance, i.e. power, of a zero mean random process X (t)
at time ¢ is defined as the cross correlation of the process with
itself,

o%(t) = E[X ()X (t)). 3)



If X(¢) and Y (¢) are vectors of random processes, then the
cross correlation matrix is

Txy(t) = EX®)Y(®)T] - EX@EY(®], @
and the autocorrelation matrix is
x () = EX(H)X(®)"] - EX@®IEX@®)]". )

We define W (t) as a vector of independent identically dis-
tributed Weiner processes [11]. Note that each Wiener process
is normally distributed with zero mean and variance t V 0 <
t < 0.
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Fig. 1. RC Reset Circuit

When a capacitor, ¢, is reset to a DC voltage through a
resistive switch, as shown in Figure 1, and the switch is
abruptly opened the noise voltage power on the capacitor
is U%,c = % [12]. Note that the voltage noise power is
independent of 7 and the final DC voltage across the capacitor.
Through the remainder of this paper we will call this type of
capacitive reset “hard reset.” Since voltage times capacitance
equals charge, the charge noise stored on the capacitor after
reset is O'éc = kT'c. The RMS charge noise in electrons

is —ﬂ, where ¢ is the charge of an electron. This shows

that larger capacitors reduce the voltage noise, while on the
contrary smaller capacitors reduce the charge noise.

IIT. RESET NOISE ANALYSIS

In this Section we present a method for solving linear
time varying stochastic differential equations (SDEs) based
on Itd calculus [9], [10]. This method can also be extended to
non-linear time varying SDEs. A complete description of this
method applied to circuit simulation is given by Demir [13].

Using this method for solving SDEs we analyze the reset
noise performance of a pixel first described by Loose et al. in
[4]. We call the reset noise reduction technique used by this
pixel “bandwidth control.” This technique uses a feedback loop
to directly attenuate the thermal noise of the reset transistor.
Moreover, if the noise bandwidth of the reset transistor is less
than the bandwidth of the feedback loop, then the noise voltage
stored on the capacitive sensor can be reduced below kTT

Reducing reset noise using bandwidth control is a two
step process. First, hard reset is performed on the capacitive
sensor. Then an error amplifier in a feedback loop is connected
via a time varying resistor to the capacitive sensor. Finally,
the resistance of time varying resistor is increased until the
bandwidth of the error amplifier is much larger than the
noise bandwidth of the resistor.! In addition, r(t) — oo as

1If the resistor’s noise is to be attenuated, the bandwidth of the error
amplifier must be larger than the noise bandwidth of the time varying resistor
for a significant period of the reset cycle.
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t — oo, i.e. the resistor that connects the error amplifier to
the capacitive sensor must become disconnected by the end of
the reset cycle.

Fig. 2. Bandwidth Control Schematic
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Fig. 3. Simplified Bandwidth Control Model

A circuit that implements bandwidth control is shown in
Figure 2. A simplified linear, but time varying, model of this
circuit is shown in Figure 3, and the timing waveforms for the
model are shown in Figure 4. After hard reset is complete,
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Fig. 4. Bandwidth Control Timing Waveforms

i.e. t; <t < tg, the capacitive sensor noise voltage power is
approximately equal to (Ts% When r(t) is increased after
t2 the voltage noise, ¢, (t), on the capacitive sensor can be

determined by finding the covariance matrix of
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V(t) satisfies the following set of SDEs

dv (¢) dW (1)
—2 —BV( —_— 7
7 Vi) +C— )
where
_ | atecr —cy
= |: —Cf Cse T cf :| ! (8)
5 =% w59
B-— T_Gjl o ;(n‘ ; g . (9)
EO RG]
and
[ VB T
C= (10)
_ 2kT 0
0]
To simplify our notation, let
D=A"1B, (11)
and
E=A"'C. (12)
Assuming the initial condition
E[V(0)] =0, (13)
then
E[V(#)] =0V t>0. (14)

Since E[V(t)] = 0, By (t) = E[V(¢)V(¢)T], it can be shown
that V(t) is an Itd process [9], [10], and therefore using the
1td formula [9] for stochastic differentials we find that

AV V)T = OVEHVHT +VE)v()'DT
+EET)dt + V(t)(EdW ()T
+EIW @)V ()T.

15)

Taking the expectation of both sides of equation 15 and
dividing by dt we find the following set of deterministic
differential equations

d
_Ed_\;@ —DEv(t) + Sv(6)DT + EET.  (16)
Using equation 16 with the initial condition
0 0
Ev(0) = [ 0 AT ] a7
CsetcCf

we can numerically determine oy, (t), 0%, (t), and 09, . . In
order to derive a closed form result we let r(¢) be a constant,
r, and then it can be shown that as ¢ — oo

b, = (clcsergo + Cfcsergo + crarg’+

cf’ngrgo +cfgo+c ﬂgmr + CiCseVGm T
CCseVGm + CFCLYGm + €] gm),

(18)
0'%/0 = (Cm YT go + 2Cfcst7gmr.}a
Cf'}‘gm:' Go -+ Csego + Csc')’gm? I
25;09979"11 + cf'ygmr + creseg2 T+ 19

CFCse g2, + CreIga,T + C1CeeYgm+
CFCseVgm + CFCIYGm + CoeGm)s

21

and

K (crese¥gmTgo + CHYGMT g0~
CiCseGmTgdo — CfCsedmTGo — CFCIGmTGo—
CiCseGo + CfCoe VI + CYGmT+
CiCseYGm + CfCseYGm + CFCIYGm—
Clcsegm)

OV, Vs

(20)
where

B = ((cicse +csese +crer)(go + gm)

21
(cse"'gm + Cfrgo + Crgm7T + Cse + Cl))' ( )

For example, if we assume that {3 — tp is sufficiently long
and that T' = 300K, ¢; =0.3pF, v =1, ¢y =0.4{F, ¢, =6fF,

gm =21.3uS, g, =358nS, and r = 400MQ then oy, (t3) =
29nV2, o2 (t3) = 8.7uV?, and o3, y, (t3) = —72.6nV2,

Note that » was selected such that 27rr(cse +cf) = 16ps.
If we numerically solve equation 16 for 0 < ¢ < 20us
using r(t) = roexp(t ) where 7o =10KQ and 7 =1us, then
0% (t3) = 3.20V2, oy, (t3) = 8.9uV?, and o, v, (t3) =
—0. 137uV2 Figure 5 shows the numerical solutions of equa-
tion 16 for 0 < t < 20us with five different values of 7
ranging from 0.25us to 4us and ro = 10KQ. As expected
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Fig. 5. Numerical Solutions of Bandwidth Control SDEs

the closed form approximation and the numerical solution are
not very close due to the time varying nature of the SDEs.
After t3 the topology of the circuit is modified for readout
by closing/opening the switches controlled by breset. This
causes noise stored on ¢; to be transferred onto ¢, via cy. By
considering conservation of charge for c,. and cy, it can be
shown that after ¢3 the noise voltage on cg, is

O’%/m!(t>f;3} =: © +lc 37 (2cfcse(av (tg)—
oy, vﬂ(t3))+
ﬁf(av (t3) + 07, (t3)—

20\/ Vo ( ))+cseU%/ (t3))‘

Using the results from the closed form solution o3, (¢ >
t3) = 73nV?, and 2 (¢ > t3) = 10.8¢- RMS, and using the
results from the numencal solution o (t > t3) = 55nV?,
and —‘l;l(t > t3) = 9.4e- RMS. Note that noise injected by
cf onto cge at t = i3 dominates the readnoise. Therefore,
minimizing ¢y is critical for low noise reset and readout of
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IV. SIMULATION

In this section we present circuit simulations that demon-
strate the reset noise reduction technique described in Sec-
tion III. The simulation results were generated using HP-
SPICE’s transient noise analysis tool. HPSPICE uses Monte
Carlo simulation for transient noise analysis. BSIM3 level 3
SPICE models, from a 0.18um CMOS process, were used
for the simulation. The simulations were performed using 512
runs with T' = 25°C, Vg = 2.8V, and V,¢eer = 2.0V.

Figure 6 shows the SPICE input waveforms used for simu-
lating the bandwidth control circuit, shown in Figure 2, and the
SPICE generated output waveforms. Table I shows all of the
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Fig. 6. Bandwidth Control Input/Output Waveforms

capacitor, transistor and amplifier characteristics for Figure 2.
Figure 7 shows the transient noise simulation of the bandwidth

Component | Parameter Value

c capacitance 0.3pF

cr capacitance 0.4fF

Cse capacitance 6fF

My W/L 0.42pum / 0.6pm
M, threshold voltage 0.45V

Mgy W/L 1.2pum / 0.5um
Mgy threshold voltage 0.45V

Mgy transconductance 36.2uS

Mgy body effect conductance | 8.3uS

Mg, output conductance 360nS

vref voltage 1.0V

TABLE I
BANDWIDTH CONTROL SIMULATION COMPONENT PARAMETERS

control circuit. The reset noise voltage power on the capacitive
sensor of, at Sus is approximately 0.4uVZ2. This result
corresponds to about 60% of the predicted hard reset value

kT : 2 . : 2 .
oreter The noise power oy, _ after 25us is 68nV*, Therefore

. . ) ay '
the reset noise reduction factor, .RNRI:* = W(Tt"m’ is
9.5. Theoretical and simulated noise results are compared in
Table II. The Table column headings are: CFS is closed form
result, NS is numerical solution, and MCS is Monte Carlo
simulation. Using the same computer, the time required to
solve the SDEs numerically (with Matlab) is approximately
15 seconds, and the time required to perform the HPSPICE
Monte Carlo simulation is approximately 15 minutes.

V. CONCLUSION

‘We have presented a theoretical framework for understand-
ing and modeling reset noise suppression in CMOS image

22
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Fig. 7. Bandwidth Control Transient Noise Waveforms

CFS NS MCS
o'%/se (t =25us) | 73nV? | 55nV? | 68nV<
RNRF 8.9 11.8 9.5

TABLE II

SUMMARY OF RESULTS

sensors. This method has been demonstrated on a circuit which
is currently in use. We also showed that simulated results
correspond closely with theory.
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