Fast Square-area Detection Algorithm using Automata for VLSI Implementation

Junichi AKITA, Kazuhiro MAEDA, Akio KITAGAWA and Masakuni SUZUKI
Dept. of Electrical and Comp. Eng., Kanazawa University
2-40-20 Kodatsuno, Kanazawa, Japan.
TEL:+81-76-234-4863 FAX:+81-76-234-4870 e-mail:akita@ec.t.kanazawa-u.ac.jp

1 Introduction

Conventional image sensors, including CCD sensors and smart sensors are considered for just acquiring the image as the matrix of dots, not for recognizing the meaning of image.

In this paper, we propose a novel real-time algorithm to detect the square area in an object using the structure of node automata, and discuss its implementation as a CMOS image sensor, where the pixels and the node automata are integrated in one chip. We also discuss the search algorithm of their position in the pixel plain using area dividing methodology.

2 Area Detection Algorithm

First, we consider the one-dimensional array of pixels and node automata, as shown in Fig.1. Here the squares at the highest level are pixels, whose colors represents whether they belong to the target object (gray, '1') or not (white, '0'). The circles at the lower levels represent the node automata, which have the value of logical AND of the two pixels or nodes at the previous level, as the following procedures. (Here d_i is the value of pixel at the i-th place, and $S_{i,j}$ is the value of node at the i-th level, and j-th place.)

1. The nodes at the first level, $i = 1$, have the logical AND of value of two neighbor pixels; $S_{1,j} = d_j \cdot d_{j+1}$.

2. The nodes at the second level, $i = 2$, have the logical AND of values of two neighbor nodes at the first level; $S_{2,j} = S_{1,j-1} \cdot S_{1,j+1}$.

3. The similar procedures are processed for the lower level, until all of the nodes become '0'; $S_{n+1,j} = S_{n,j-1} \cdot S_{n,j+1}$.

The node value of '1' at i-th level represents the block of 2i pixels, and all nodes will be '0' at the k-th step if the size of the largest pixel block is 2k. We can detect the position and size of the block of pixels, by detecting where and when all nodes have become '0'.

It is notable that the nodes determine their values just according to the values of neighbor nodes at the previous step, and they can be easily implemented as the finite state automata connected to only the neighbor nodes.

The above structure and the processes can be extended for the two-dimensional case, by placing matrix pixels with the node automata among the pixels, as shown in Fig.2. In this case, the number of steps needed for detecting the square area whose size is $m \times n \leq n$ is $n/2$ at maximum, in other words, the number of detection steps is proportional to $O(n)$, which is fast enough for practical image data.

Here, we describe the simulation results of this algorithm for real images. The original image shown in Fig.3(a) are digitized according to color information as shown in Fig.3(b). The square area detection discussed above is processed for the digitized image, and the processes are shown in Fig.4(a)-(f).

All the pixels are going to be eliminated at the 7th step, just after the Fig.4(f), and the all of detection
Figure 2: Detection process in two dimensional case

Figure 3: Original sample image (a) and digitized image according to color information (b)

Figure 4: Detection steps

Figure 5: Detected results of each square area
the upper-left subarea is divided into four smaller subareas, and then the upper-left smaller subarea should be divided into four subareas at the step(c).

The above scanning procedure of image plain generates a kind of encoded image, and it is reported that it is more effective especially in case of less number of eliminating pixels than to scan all pixels[1].

The all of the detection and search procedures are summarized as follows.

1. Read in the digitized image.

2. Make transition of all node automata.

3. If there are any eliminating node automata, scan the position of them by executing area division steps.

4. Repeat the 2. and 3. steps until all node automata transits to \('0'\).

4 Implementation of Fast Area Detection Algorithm

4.1 Design of state transition evaluation circuit

We have designed the evaluation circuit of processing just the detection procedures. The original image is fed into the circuit serially, and the state transitions of node automata are occurred until all the nodes goes to \('0'\). The state of each node is read out as the logical-OR of nodes in both the vertical and the horizontal line.

Figure 8 shows the designed circuit using CMOS 1.2\(\mu\)m, 2 layers metal process\(^2\). The chip size is

\(^2\)The VLSI chip in this study has been fabricated in the chip fabrication program of VLSI Design and Education Cen-
2.3mm×2.3mm, and it contains 5×6 pixels and 4×5 node automata. The measured operation speed is 7.8ns.

4.2 Design of detection and search evaluation circuit

We have designed the evaluation circuit of processing these procedures. The circuit consists of two parts; the node automaton including detection circuit of ‘eliminating’ pixel, the search controller of the positions of ‘eliminating’ pixels.

Figure 9 shows the circuit of the node automaton. The current state of each node, S_{ij}^{n-1} and the inverse of it, S_{ij}^{n-1}, are distributed to the neighbor pixels. The state of the next step is generated as the logical-AND of the current states of neighbor pixels, and the flag indicating ‘eliminating’ pixel, f_{ij} is also generated as Eq.(1).

This node is considered as the pixel at first step, and it makes its transition as the node automaton at the later step. These two mode is selected by the multiplexor placed at the input of flip-flop.

Figure 10 shows the designed layout of this circuit using CMOS 0.6μm, 3 layers metal process. The chip size is 4.5mm×4.5mm, and the number of the nodes is 64×57.

The image is fed into the nodes serially in this evaluation circuit, that emulates the original image generation, and it will be integrated with photo detectors as smart sensor.

The operation clock frequency estimated by the spice simulation is about 5MHz, and the operation time for detection and search of 10 objects whose size is 10times10 pixels, is about 40μs.

This chip is now under fabrication, and it will be evaluated afterward.

5 Conclusions

We proposed the fast square-area detection algorithm using node automata placed among pixels, which can be performed in $O(n)$ for the object size of n. We also discussed its implementation on VLSI sensor integrated with photo detectors, and have designed the evaluation circuit including node automata for state transition and search controller for detecting positions of objects.

Acknowledgements

This study is aided by Foundation For C&C Promotion.

References