CONTENTS

Foreword

SESSION 1: THEORY AND TECHNOLOGY

An Appraisal of Current Predictions of CCD Performance 1

M.F. Tompsett, Bell Laboratories, New Jersey, U.S.A.

Simulation for Device Design at Short Gate Charge-Coupled Devices: 14

a Complete CCD Shift Register Computer Model.

S.G. Chamberlain and M.H. Elsaid, University of Waterloo, Ontario,

Canada.

Evaluation of Low Dark Current Charge-Coupled Devices 23

G.D. Declerk, K.M. DeMeyer, E.J. Janssens, E.E. Laes, J. Vander

Spiegel and C.L. Claeys, Katholicke Universiteit, Leuven, Belgium.

Influence of Surface States on the Charge Transfer along the Dielectric- 31

Semiconductor Interface.

V.V. Pospelov, R.A. Suris, B. I. Fouks and R.Z. Hafizov, Ministry of

Electronics Industry, Moscow, U.S.S.R.

CCD with Meander Channel. 38

O. Ohtsuki, H. Sei, K. Tanikawa and Y. Miyamoto, Fujitsu Laboratories

Ltd., Kobe, Japan.

Design Aspects of S-Shaped Bulk Charge-Coupled Devices. 44

M.J.J. Theunissen and H.W. Hanneman, Philips Research Laboratories,

Eindhoven, and H.A. Schmidt, Philips I.C. Development Laboratories,

Nijmegen, The Netherlands.

Bucket Brigade Devices-Circa 1976. 55

R.R. Buss and G.P. Weckler, Reticon Corporation, California, U.S.A.

SESSION 2: IMAGING

Visible

Charge-Coupled and Charge Injection Device Performance Tradeoffs. 66

R.D. Baertsch, General Electric! Corporate Research and Development,

New York, U.S.A.

Optimization of a Solid State Image Sensor. 75

H. Fu Tseng and G.P. Weckler, Reticon Corporation, California, U.S.A.

Some Design Considerations of CCD Imaging Applied to High Accuracy 85

Space Borne Star Sensors.

R.A. Brook and D.J. Purll, Sira Institute, Kent, U.K. and H. Sameulson,

ESTEC, Noordwijk, The Netherlands.

Application of CCD Imagers in High Shock Environments. 92

K. Ferris, R. Ely and L. Zimmerman, Naval Surface Weapons Center,

Virginia, U.S.A.

Low Light Levels

Application of CCD Imagers and Low Light Levels. 98

R.R. Holeman, R.S.R.E. Baldock, U.K., and P. Gardner, R.A.E., .,

Farnborough, U.K.

CBS-mode CCD for Low Light Level Imaging Applications. 117

H.T. Brown, General Electric Co., Wembley, and P.A. Gray and

P.J. Pool, English Electric Valve Co., Chelmsford, U.K.

Operating of CCDs in the Electron Bombarded Mode. 118

L. Caldwell, E. Smith and J. Boyle, Night Vision Laboratory, Fort

Belvoir, Virginia, U.S.A.

The Advantages of CCDs for Imaging at Low Light and Contrast Levels. 119

S.B. Campana, Naval Air Development Center, Warminster,

Pennsylvania, U.S.A.

Infra Red

Infra-red CCD Systems. 127

C.T. Elliott, Royal Signals and Radar Establishment, Malvern, UJ<.

Monolithic Extrinsic Silicon IRCCDs. 145

A.W. Vere and C.T. Elliott, Royal Signals and Radar Establishment,

Malvern, U.K., and P. Migliorato, Laboratorio di Elettronica della

Stato Solido del CNR, Roma, Italy.

Calculation of Optimum Ionization Energy for Extrinsic Silicon 152

Detectors.

R.M. Logan, Royal Signals and Radar Establishment, Malvern, U.K.

SESSION 3: MEMORY AND DIGITAL COMPUTATION

Device Design for CCD Digital Memory. 159

G.F. Amelio, Fairchild Camera and Instrument Corporation, Palo

Alto, California, U.S.A.

The Application of Charge-Coupling Concepts to MOS Dynamic RAM 179

Cell Design.

A. F. Tasch, Jr., P.K. Chatterjee, H-S Fu and T.C. Holloway, Texas

Instruments Incorporated, Dallas, Texas, U.S.A.

Error Correction Coding with Charge Transfer Devices. 189

D.O. Carhoun, T.F. Roome and E.A. Palo, The MITRE Corporation,

Massachusetts, U.S.A.

Charge-Coupled Device Digital Arithmetic Functions: Experimental 190

Results.

T.A. Zimmerman and R.A. Allen, TRW Defense and Space Systems

Group, Redondo Beach, California, U.S.A.

Finite Field Arithmetic with Charge Transfer Devices. 197

T.F. Roome, D.O. Carhoun and E.A. Palo, The MITRE Corporation,

Massachusetts, U.S.A.

The CCD Memory in Microcomputer Systems 198

H. Kornstein, Intel Corporation Ltd., Oxford, U.K.

SESSION 4: SIGNAL PROCESSING

Spectral Analysis Using CCDs. 208

D.D. Buss, C.R. Hewes and M. de Wit, Texc.s Instruments Inc., Dallas,

Texas, and R.W. Brodersen, University of California, Berkeley, U.S.A.

The Performance of a CCD Signal Averager Coded to Reduce Transfer 219

Inefficiency Effects.

D.C. Cooper and B. Akham, University of Birmingham, U.K. and

J.B.G Roberts and R.D. Callan, Royal Signals and Radar Establishment,

U.K.

An Analysis of CCD Recursive Filters with Application to MTI Radar 227

Filters.

A. Chowaniec, Bell Northern Research, Ottowa, Canada, and

G.S. Hobson, University of Sheffield, U.K.

CCD Programmable Correlator. 232

E.P. Herrmann, D.A. Gandolfo, G.Boornard and D.B. Stepps, RCA

Advanced Technology Laboratories, Camden, New Jersey, U.S.A.

A CCD Analog and Digital Correlator. 238

I. Lagnado and S. Steigerwalt, Naval Electronics Laboratory Center,

San Diego, California, and J. Bond, J. Speiser and H.W. Whitehouse,

Naval Undersea Center, San Diego, California, U.S.A.

Errors in Programmable CCD Transversal Filters and Correlators. 259

D.J. Maclennan, G.E. Corporate Research and Development,

Schenectady, U.S.A., J. Mavor, University of Edinburgh, and

Y.R. Yeow, University of Singapore.

A Microcomputer-Controlled Adaptive CCD Transfer Filter. 269

J.E. Dilley, M. Naughton, R.C.S. Marling, G.D. Cain and A.H. Abed,

Polytechnic of Central London, U.K.

CCD Accumulators in Spread Spectrum Signal Identification. 277

H. Lobenstein, M. Quick and A. Roeder, General Electric Aircraft

Equipment Division, New York, U.S.A., and W.E. Engeler, J. Tiemann

and R.D, Baertsch, General Electric Corporate Research & Development

Center, New York, U.S.A.

Signal Processors Incorporating CCD Shift Register Time Compressors. 282

P.M. Grant, M.A. Jack and J. Mavor, Dept. of Electrical Engineering,

and D. Saxton, Wolfson Microelectronics Liaison Unit, University of

Edinburgh, U.K.

A CCD Frequency Selective Filter. 291

A.P.H. McCabe and A.G. Hellier, The General Electric Co. Ltd., Hirst

Research Centre, Wembley, U.K.

A Quadruply Sensed CCD Transversal Filter for Quadrature Phasing. 292

C. Morandi, lstituto di Elettronica, Universita de Bologne, Italy, and

H. Wallinga, Twente Univers1ty of Technology, Enschede, The

Netherlands.

Cancellation of Aliasing in a CCD Low-Pass Filter. 302

J. L. Berger and J. L. Coutu res, Thomson-.CSF, Paris, France.

A Capacitively-Metered Input Circuit for Linear Operation of CCDs. 307

R.C. Tozer and G.S. Hobson, University of Sheffield, U.K.

A Time Delay and Integration CCD for a Serial Scanned IR Imager. 315

G.F. Vanstone, J.G. Harp, J.M. Keen, D.V. McCaughan and D.B.

Webb, Royal Signals and Radar Establishment, Malvern, U.K.

An MOS Amplifier for CCD Applications. 326

N. Weste, University of Adelaide, Australia, and J. Mavor, University

of Edinburgh, U.K.

Bipolar Peripheral Circuitry for CCDs. 339

J.M. Wilkinson, J.F. Dickson, V.A. Browne and K.D. Perkins, Allen

Clark Research Centre, The Plessey Co. Ltd., Towcester, U.K.

SESSION 5: SYSTEMS

Applications of Charge Transfer Devices in Television. 348

B.H.J. Cornelissen, L.J.M. Esser and L.J. Van de Polder, Philips

Research Laboratories, Eindhoven, The Netherlands.

A CCD Analog Memory System for Slow-scan Conversion of Standard TV 364

Video.

S.P. Buchanan and R.R. Clark, Martin Marietta Aerospace, Orlando,

Florida, U.S.A.

An Experimental TV Ghost Cancellation Circuit with Automatic Gain 371

Control.

H.W. Hanneman and B. Visser, Philips Research Laboratories, Eindhoven,

The Netherlands.

TDMA Using Time-compressed Analog Signals. 389

H.L. Weinberger, Hughes Aircraft Company, El Segundo, California,

U.S.A.