A 1392x976 2.8μm 120dB CIS with Per-Pixel Controlled Conversion Gain

Johannes Solhusvik, Sam Hu, Robert Johansson, Zhiqiang Lin, Siguang Ma, Keiji Mabuchi, Sohei Manabe, Duli Mao, Bill Phan, Howard Rhodes, Charles Shan, Eric Webster, and Trygve Willassen
Motivation

- To develop a 2.8um 120dB sensor with excellent light sensitivity and reduced ghosting artifacts in fast moving scenes (e.g. traffic scenes)

- OmniVision’s split-diode pixel technology is ghost free (IISW’13 and IISW’15), but difficult to scale down to 2.8um pitch (fill factor/QE)

- New scheme => DCG HDR combined with staggered HDR
Pixel circuit and readout chain

- HCG = 240μV/e⁻; LCG = 20μV/e⁻; C = MOS + diff + parasitics
- ADC: 12 bits; Tconv ~ 1.5 μs; Padc = 14.4 mW @ 1.2 V (excl. Vref)
- Again: 1x-2x-4x-8x (Vref)
DCG HDR CDS timing

- True CDS in both HCG and LCG readout
 - HCG: 1e- rms; LCG: 10e- rms
- DCG HDR achieves 94dB (120dB requires staggered HDR capture, not shown)
Chip architecture

90nm BSI Gen-2
3.3V / 1.8V / 1.2V

DCG combine outputs
16b linear value

20b DCG+staggered combine off-chip

12b
4-lanes
Measured SNR vs Light level (EMVA)

- **High FWC at low gain**
- **Low Noise at high gain**
- **Seamless connection, No SNR drop, No exposure difference/moving artifacts**

Light level (lux), 530nm, F1.6, 60fps
DCG HDR vs Staggered HDR mode

HCG (T1) + LCG (T1)
94dB scene

HCG (T1) + VS (T2)
94dB scene

No ghosting artifact

Ghosting artifact

Rem: Brightness difference is due to different tone mapping settings in the ISP
Measured readnoise distribution (1-CDF)

HCG@8x Again

Median value = 0.87 e- rms
Measured 2-frame Difference Histogram

-20e- | -10e- | 0 | 10e- | 20e-

PPM

HCG @8x Again

- Fit1 Gaussian onto 99.9%
- Fit 2 Gaussian Curve
- Fit 3 Lorentizan Curve
- Fit2+Fit3
- Measured Data
Measured Quantum Efficiency

- QE improved 3x to 58% @ 850nm
- Visible region cross-talk not changed
Image comparison

850nm

Baseline

Improved NIR version

- No IR image degradation
- Showing no negative MTF impact @ 850nm
Performance summary

<table>
<thead>
<tr>
<th>Performance</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel Size (um)</td>
<td>2.8</td>
</tr>
<tr>
<td>Resolution and FPS</td>
<td>1.3M/60</td>
</tr>
<tr>
<td>FWC (e-)</td>
<td>50K</td>
</tr>
<tr>
<td>Sensitivity (e-/lux.sec)</td>
<td>31K</td>
</tr>
<tr>
<td>Max QE (% R/G/B/IR)</td>
<td>(79/84/76/58)</td>
</tr>
<tr>
<td>Xtalk (%)</td>
<td>14</td>
</tr>
<tr>
<td>PRNU (%)</td>
<td>0.4</td>
</tr>
<tr>
<td>RN (e- rms, 8xgain) @HCG</td>
<td>1.0</td>
</tr>
<tr>
<td>DC (e-/sec) 60C</td>
<td>20</td>
</tr>
<tr>
<td>Lag (%)</td>
<td>0.1</td>
</tr>
<tr>
<td>SNR1 (lux) 3200K; 60fps</td>
<td>0.19</td>
</tr>
<tr>
<td>SNR1 (Photon/pixel) @ 530nm (EMVA)</td>
<td>2.0</td>
</tr>
<tr>
<td>DR (dB) DCG/Staggered mode</td>
<td>94/120 w/30dB minSNR</td>
</tr>
</tbody>
</table>
Thank You!