Column-Parallel Architecture for Line-of-Sight Detection
Image Sensor Based on Centroid Calculation

Hayato Kawakami Satoru Igarashi Yuta Sasada Junichi Akita
School of Electrical and Comp. Eng., Kanazawa University Kakuma, Kanazawa, Ishikawa, Japan
TEL: +81-76-234-4864 E-mail: kawakami@ifdl.jp akita@is.t.kanazawa-u.ac.jp

1. Introduction
Line-of-sight (LoS) detection, or detecting where the user is looking at, is an attracting as a new type of user interfaces [1]. The eyeball also moves very rapidly, which is called as saccade, and it is also expected to be applied for another type of user interfaces [2], however, real-time tracking of saccade is difficult by using the conventional image processing systems for their long processing time and/or latency against the speed of saccade.

In this paper, we propose the column-parallel LoS detection architecture for the integrated image sensor, which can track the saccade.

2. LoS Calculation
The LoS can be calculated by the position of the pupil in the infrared image of the user’s eye, which is observed as a black area [3], as shown in Fig.1. The position of the pupil, whose shape is a circle, can be defined as a centroid of the pupil (digitized black) area with the sub-pixel accuracy.

The centroid of the area, \((\bar{x}, \bar{y})\) with the binary flag of ‘1’ for the pupil, can be calculated as follows.

\[
(\bar{x} = \frac{\sum x \sum y p_{xy}}{\sum x y p_{xy}}, \quad \bar{y} = \frac{\sum x \sum y p_{xy}}{\sum x y p_{xy}})
\]

(1)

As shown in eq.(1), the values of \(\sum x \sum y p_{xy}\), \(\sum x y p_{xy}\) and \(\sum x \sum y p_{xy}\) are required in calculation of the centroid.

3. Column-parallel Architecture for Centroid Calculation
Fig.2 shows the designed column-parallel architecture for centroid calculation, to realize both high resolution, such as VGA or above, and high frame rate, such as 500[fps] of above [4].
The centroid calculation in performed in parallel at each column, and the required operation frequency \(f \) is expressed as follows.

\[
f = F \cdot (y + x)
\]

(2)

Here, \(F \), \(x \) and \(y \) are the frame rate, horizontal and vertical number of pixels, respectively, and the total number of calculation step is \((y + x)\), since the centroid calculation is performed in top to down (vertical) at first, and then left to right (horizontal) in order. The frame rate of 500[fps] and VGA resolution \((640 \times 480 \text{ pixels})\) gives \(f \) of 560[kHz], which can be easily achieved by the recent CMOS technologies.

The flag to indicate the pupil area, \(p_{xy} \), is generated by a comparator with adequate threshold in each column for each sequential read-out step in entire row from standard 3-Tr pixel (APS) circuit, as shown in Fig.3.

After finishing calculation of \(\sum_y p_{xy} \) in each column, the sum of the each column’s result is performed by sequential read-out and accumulation for all the columns, in order to obtain the \(\sum_x \sum_y p_{xy} \), the area of the pupil. The accumulation for the column direction is implemented by the adder and the register located at outside the column array, as shown in Fig.5.

The calculation of \(\sum_x \sum_y x p_{xy} \) is similar to that of \(\sum_x \sum_y p_{xy} \) described in section 3.1. Fig.6 shows the circuit of \(\sum_y p_{xy} \) calculation. The product of the \(x \)-coordinate for each column and the binary data from the comparator is accumulated with the similar architecture of \(\sum_y p_{xy} \) calculation. Note that this product can be calculated by using the AND gate array, since the multiplier of \(x, p_{xy} \), is 0 or 1. The accumulation of all the columns is also performed with the same manner as \(\sum_x \sum_y p_{xy} \) by the externally located accumulator.

The calculation of \(\sum_x \sum_y y p_{xy} \) is performed in parallel at each column. The calculation of the \(y \)-direction, \(\sum_y y p_{xy} \), is divided into \(y \)-direction (\(\sum_y p_{xy} \)) and \(x \)-direction (\(\sum_x \)), and \(\sum_y \) can be calculated at the sequential read-out step for entire rows independently in each column. After finishing read-out steps, the calculation of \(\sum_y \sum_x p_{xy} \) is performed with read-out and accumulation for all the columns in order, during the next integration period.

3.1. Calculation of \(\sum_x \sum_y p_{xy} \)

The circuit of calculating \(\sum_y p_{xy} \) at each column is composed of combined element circuit (Su), which is composed of one bit full-adder, register and buffer, as shown in Fig.4. The serial connection of Su forms a ripple-carry adder and accumulation register for the required number of bits in calculations.

The sum of the binary data from the comparator and the accumulation value is stored in the register for each row read-out step, to calculate the number of black pixels in each column.
After the accumulation, each values of $\sum y p_{xy}$ are accumulated for all the columns in x-direction by the circuit located outside the column array.

The centroid of the pupil can be calculated by eq.(1) with these three values for each frame.

$$\text{eq.(1)}$$

![Figure 7: The circuit of $\sum y p_{xy}$ calculation](image)

4. Implementation

We are now designing the LoS detection system with the processing architecture described in section 3 on two hardware platforms. One is on the emulation system composed of the high-speed camera and FPGA, as shown in Fig.8, where column-parallel processing architecture will be truly implemented for algorithm evaluation. The other is on the integrated image sensor with 128 × 32 pixels using standard CMOS 0.18um, five layers of metal technology.

![Figure 8: The emulation system composed of the high-speed camera and FPGA](image)

5. Prediction of Saccade Movement

The real-time tracking of the saccade movement is expected to realize the estimation (prediction) of the goal point of saccade movement by the beginning of the saccade, and the predicted goal point of saccade movement can be used a new type of information display methodology.

We carried out the measurement of saccade movement by using the high-speed camera (up to 1200[fps]) and off-line processing. Fig.9 shows an example of the measured saccade movement (x-coordinate of the pupil in eye image), and Fig.10 shows the distance of saccade movement (from the beginning to the goal) against the slope (speed) of saccade movement. From the result in Fig.10, it is expected to estimate (predict) the goal point of the saccade movement at the beginning step of saccade movement. The detailed evaluation will be reported in our future works.

![Figure 9: An example of observed saccade using high-speed camera](image)

![Figure 10: Distance of the saccade movement against the speed of saccade movement](image)

6. Conclusion

We proposed the column-parallel LoS calculation architecture for integrated image sensor based on centroid calculation. We also demonstrated the evaluation of saccade prediction with the saccade movement. The implementation of an emulator, design an image sensor and estimation are now in progress work.
References

