Backside Illumination Technology
For SOI-CMOS Image Sensors

Bedabrata Pain
Edict Inc
bpain@sbcglobal.net
310-666-6749

ACKNOWLEDGMENT

My ex-colleagues at JPL, specially Tom Cunningham, Chao Sun, Chris Wrigley, Suresh Seshadri, Xinyu Zheng, Victor White, Risaku Toda

Magnachip Semiconductor
Avago Technologies
Tom Joy
Homayoon Haddad
Prof. Durga Misra at New Jersey Institute of Technology
Indian Institute of Technology, Kharagpur
PROBLEMS of SMALL PIXEL

PIXEL SCALING TRENDS

Continuous Technology “Breakthrough” Needed to Keep up with the Scaling Trend

Metric \(\frac{FW(e) \cdot Tech(\mu m)}{V_{dd}(V) \cdot Pitch(\mu m)} \)
ANGULAR RESPONSE

Numerical aperture

Stack-height + Obscuration
- Sensitivity loss
- Vignetting
- Color X-talk
- Spatial variation of x-talk
- Poor angle response

Telecentricity

DETECTIVE QE (MODIFIED)

Photons Noise+XT

Output

How well does it transfer power?

\[
dQE = \frac{SNR_{out}^2}{SNR_{in}^2} = \frac{QE^2(1-\alpha^2)\alpha^2}{QE(1-\alpha)+\alpha|N_\alpha|}
\]

\[
= QE \left[\frac{(1-\alpha)^2}{(1-\alpha)+\frac{\alpha}{P} \frac{N_\alpha}{QE}} \right]
\]

[1, 2]

Increase QE (QE >= 100)
Reduce Noise (N_\alpha=0)
Eliminate X-talk (\alpha=0)
FRONT-SIDE ILD MODIFICATION

THINNER FRONT-END [3]

Cu Process

Metal 3
Metal 2
Metal 1
Silicon

20% Shrink

Micro Lens
Color Filter

Metal 3
Metal 2
Metal 1
Silicon

Process Complexities
Basic Problems remain

LIGHTPIPE APPROACH [4]

Photo-diode

gate 1.5 μm

Difficulties in material selection

BACK-ILLUMINATION
BACK-ILLUMINATION: A SOLUTION

- High Sensitivity and quantum efficiency
 100% fill-factor
- Excellent X-talk and Angular Response
 "Canyon" effect eliminated
 No obscuration
 Spurious reflections eliminated
- Efficient microlens and anti-reflection coating
 Planar surface
- Advanced pixel processing
 Dynamic range expansion
 Global shutter
 Gain ranging
 Low noise
- Compatibility with next generation dielectrics and metals

CROSS-SECTION

- Collection much closer to microlens
- No Obscuration
- Supports larger numerical aperture
BACK TO MAXWELL

Plenty of optical energy leakage due to pixel dimension, wave-effects, CFA

FDTD simulation of energy coupling

OPTICAL ADVANTAGE

Optical Coupling into Silicon for 1.75 μm pixel

Front Illumination (TE/TM) Back Illumination (TE/TM)

Almost 3x improvement at F 2.0
QE & OPTICAL CROSS-TALK

- QE goes down and Cross-talk goes up
- QE loss due energy spread via E-M field propagation
- Front-side QE also limited by imperfect AR coating

BACK-TINNING ISSUES

Manufacturable + Wafer-level Processing + Good device performance

- Accurately thinning 700 µm substrate with <50 Å surface roughness
 - Appropriate etch-stop
- Backside passivation
 - Hold exposed surface in accumulation
- Device support (during and after thinning)
 - Attachment of support wafers – must allow post-processing
- Packaging
 - Where do pads come out from? Wire-bond or CSP?
- AR coating, Color, Microlens
 - Alignment key
 - Stack issues
- Diffusion Cross-talk Control
 - Field-shaping implants
 - Back-surface gradients
PASSIVATION PROBLEM:
- Exposed Si-SiO₂ interface quality is poor
 - high trap density, potential pocket due to band-bending
 - loss of blue QE and high dark current

BACKSIDE TREATMENT
- Implant + RTA Anneal
 - Cannot be used due to the presence of metals
- Implant + Laser Anneal [6, 7]
 - PRNU, Dark current
- Delta-doping: few monolayers of boron added by MBE to the back surface [8]
 - Excellent results, but non-standard process
- Flash gate: deposited oxide + UV flooding [9, 10]
 - Outgassing, Long-term stability
 - Non-desirable metal; AR coating issues
- Back-gate: deposited oxide + ITO gate
 - Process Control; AR coating issues
FABRICATION STEPS

SOI TO THE RESCUE

Thin silicon layer: 200 nm
BOX: 200 nm

Small Pixels [13]

CMOS readout/ADC
Metal interconnects
Pixels in handle wafer

Thick Silicon Substrate

NIR enhanced Imager [12]

Thick silicon layer: 2-10 µm
BOX

Pixels

Metal interconnects
SOI IMAGER FABRICATION

- SOI wafer with thick device layer (~ 2-10 µm)
- Imager-compatible bulk-CMOS process

Starting Wafer → Bulk-CMOS process → Support wafer attachment → Wafer thinning → Backside coating → Pad Opening

- Provides mechanical support
- Bonding process/material must be back-end compatible
THINNING

- Wafer-level thinning
- Natural high-selectivity (Si-SiO₂) etch-stop

PASSIVATION

- Buried oxide made by thermal oxidation
- Pre-implanted region for passivation
- Self-passivation: surface never exposed

Chemical Etch

- Hot KOH/TMAH wet-etch
- RIE with SF₆
- XeF₂ vapor-phase

<table>
<thead>
<tr>
<th></th>
<th>KOH</th>
<th>SF₆</th>
<th>XeF₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td><20A</td>
<td><500A</td>
<td><20A</td>
</tr>
<tr>
<td>Global</td>
<td><200A</td>
<td>3000A</td>
<td><40</td>
</tr>
</tbody>
</table>

BACK-to-FRONT ALIGNMENT

Exposed metal holds alignment keys
PAD OPENING

- Deposited oxide
- Deposited oxide/nitride
- Planarized oxide
- Glass wafer

THE CROSS-SECTION

- Handle Silicon
- BOX
- Device Silicon: 3.3 µm
- ILD
- M0
- p-Si
- p-substrate (50 Ω-cm)
- Deposited oxide
- Deposited oxide/nitride
- Planarized oxide
- Glass wafer
- Cross-section after thinning

- p-Substrate (20 Ω-cm)
- Integrated SiO2 (ILD)
- Implanted wells (devices)
- Metal trace (0.7 µm thick)
- Planarized oxide
- Deposited oxide/nitride
- Deposited oxide
ALTERNATE INTEGRATION SCHEME

- Through silicon via is formed at the first metalization step
- Liner oxide for isolation
- Serves as alignment key for CFA/ML

Deep silicon via formation

Support Wafer + Thinning

Final Cross-section

[17, 18]
POSSIBLE EVOLUTION

1st Generation
Through Silicon Contacts for wirebonds
Pixel optimization

2nd Generation
Higher Dynamic Range – In-pixel Cap
Better Z-height - WLCSP

3rd Generation
Only pixel in wafer – best performance
SOC integration

PERFORMANCE
COLOR BIS IMAGER

Back-illuminated 1.75 µm Color Picture

PERFORMANCE IMPROVEMENT

Median luminance = 3 lux

Median luminance = 690 lux for D65

↑ 2.5x increase in Sensitivity for 2.2 µm pixel
↑ Dark current & Full-well about the same
↑ Angular response improves by 5x
↓ Electrical cross-talk worse
QUANTUM EFFICIENCY

- Surface Boron is an effective tool to improve QE
- Blue QE affected by boron content at the surface
- For color Imager: 20% loss going through CFA and OCL

WELL BEHAVED DARK CURRENT

- Front Illuminated
- Nitride cover
- Back surface Boron
- Nitride + H$_2$ anneal
- Dark Current (e/sec)

<table>
<thead>
<tr>
<th></th>
<th>Front Illuminated</th>
<th>Nitride cover</th>
<th>53</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>None</td>
<td>None</td>
<td>8000</td>
</tr>
<tr>
<td>Small</td>
<td>None</td>
<td>Yes</td>
<td>419</td>
</tr>
<tr>
<td>Medium</td>
<td>Yes</td>
<td>Yes</td>
<td>133</td>
</tr>
<tr>
<td>High</td>
<td>Yes</td>
<td>Yes</td>
<td>57</td>
</tr>
</tbody>
</table>

[14]
ANGULAR RESPONSE

Slight increase in relative angular response is due to optical path difference

BACK FIELD

- Simulated Nominal Back doping gradient and electric field
- Back-field drives minority carriers towards front
- Back-field suppresses Cross-talk
- Proper doping gradient is extremely important

Doping Trade-offs
RTS NOISE REDUCTION

- Source follower as the main source of RTS
- Both modal noise and noise spread is reduced by length increase

\[C_{SH} = 1.5 \, \text{pF}; \quad G_{cp} \approx 45 \, \text{\mu V/e}; \quad I_{bias} = 3 \, \text{\mu A} \]

MANUFACTURABILITY ISSUES
SUPPORT WAFER BONDING

Acoustic micrograph of low-temperature oxide-oxide bonded support wafer (courtesy Ziptronix, Inc.): No voids

Passes die-level thermo-mechanical tests (thermal shocks and temperature cycles)

Alternate schemes? [17]

“PEEL OFF”

DELAMINATION

EDGE EXCLUSION

Sawing Process optimization to prevent delamination

Optimization of bonding and grinding process to eliminate edge-cracking during subsequent processing
THE THREE THINGS ...

- Back illumination
- Front illumination

Electrical Cross-talk
- Separated generation and collection area
- Back surface field
- Deeper Junction

QE
- Integration of AR stack on the BOX

Dark Current
- Back surface passivation with integrated AR stack

AR STACK OPTIMIZATION

- Excellent AR stack can be achieved with SiN/SiO layers
- Need to ensure that angular response is acceptable
- BOX not the ideal-choice for 1st AR layer
DARK CURRENT with AR STACK

BOX etching does not increase dark current, if done right!

CROSS-TALK

• Boron needed to passivate interface states
• Boron gradient needs to be optimized
• Boron segregation is the source of problems
• N-type substrate is preferable
CROSS-TALK TRADE-OFF

- Diode doping profile engineering for deeper field penetration
- Optimize silicon thickness
- "Clean-up" back surface: Boron segregation could be a problem
- Modify CFA?
- Modify microlenses
- Optimize AR stack

MOVING FORWARD (in lieu of conclusion)

Cost - how low can you go?
Special SOI wafer needed?
Will SOI wafer become cheaper and have shorter turn-around time?
Where are the yield and reliability "gotchas"?

Performance
SOI wafer quality? Will lack of gettering be an issue?

Alternate Support Wafer Attachment
Need for an alternative to LT-bonding? Alternate support materials?

Appropriate Optical Stack
What materials for AR stack?
Alternate CFA?

Improving Cross-talk
Boron segregation - N-type material?
Alternate diode profiles and barrier implants? Deep trenches?
Alternate dielectric for improved passivation? ITO?

Packaging
Chip-on-board (COB) or Chip-scale-packaging (CSP) or wafer scale (WSP)?
REFERENCES